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Abstract
The physics of coherent beams of photons carrying axial orbital angular momentum (OAM)

is well understood and such beams, sometimes known as vortex beams, have found applications
in optics and microscopy. Recently electron beams carrying very large values of axial OAM have
been generated. In the absence of coupling to an external electromagnetic field the propagation
of such vortex electron beams is virtually identical mathematically to that of vortex photon
beams propagating in a medium with a homogeneous index of refraction. But when coupled to
an external electromagnetic field the propagation of vortex electron beams is distinctly different
from photons. Here we use the exact path integral solution to Schrodingers equation to examine
the time evolution of an electron wave function carrying axial OAM. Interestingly we find that
the nonzero OAM wave function can be obtained from the zero OAM wave function, in the
case considered here, simply by multipling it by an appropriate time and position dependent
prefactor. Hence adding OAM and propagating can in this case be replaced by first propagating
then adding OAM. Also, the results shown provide an explicit illustration of the fact that the
gyromagnetic ratio for OAM is unity. We also propose a novel version of the Bohm-Aharonov
effect using vortex electron beams.

1 Introduction

Coherent beams of photons carrying axial orbital angular momentum (OAM), sometimes referred to
as vortex beams, are well understood [1] [2] [3], and have various uses in optics and microscopy [4] [5]
[6] [7]. Recently electron beams carrying very high amounts of axial OAM have been generated [8],
and the properties of such beams have been studied [9] [11]. Mathematically the propagation of
a vortex photon beam in a medium with a homogeneous index of refraction is virtually identical
to that of a freely propagating vortex electron beam. This is obviously not the case when the
electrons are propagating in an external electromagnetic field. Here we use the exact path integral
solution to examine how an electron wave function carrying axial OAM evolves in time in a magnetic
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field. We find that the propagation of a wave function carrying nonzero axial OAM is equivalent
to the the propagation of a zero OAM wave function multiplied by an appropriate position and
time dependent prefactor. Also, the results provide an explicit illustration of the fact the the (non-
radiatively corrected) gyromagnetic ratio for OAM is unity as it must be [11]. We will see that
from a practical point of view this means that the OAM vector rotates at half the rate of that the
electron circulates in a magnetic field, i.e., at half the cyclotron or Landau frequency.
The paper is organized as follows Section 2 briefly reviews the derivation of the gyromagnetic

ratios for orbital and spin angular momentum from the Dirac equation. Section 3 discusses the path
integral solution for the (non-relativistic) propagation of the electron wave function in a magnetic
field. Section 4 uses the path integral solution to study how a vortex electron beam, actually a wave
packet, evolves in a magnetic and shows explicitly that the gyromagnetic ratio for OAM is unity.

2 Dirac to Schrodinger

For completeness we provide a brief review of the derivation of the Schrodinger equation from the
Dirac equation which shows explicitly that the (non-radiatively corrected) gyromagnetic ratio for
orbital angular momentum is unity [10].
The Dirac equation in SI units is

(iγµDµ −mc)ψD (~x, t) = 0 (1)

where ψD is a four-component Dirac spinor and Dµ = ~∂µ − ieAµ.Here Aµ is the four-vector
potential and e is the electron charge. The indices µ, ν, · · · take the values 0,1,2,3 which correspond
to the t, x, y, z directions, respectively x0 = ct, x1 = x, x2 = y, x3 = z. The Einstein summation
convention wherein repeated indices are summed over their appropriate range is used throughout,
e.g., uµvµ ≡

∑3
µ=0 uµv

µ.
Multiplying Eq (1) by (iγµDµ +mc) , and using

γµγνDµDν = DµDµ − iσµν
1

2
[Dµ, Dν ]

= DµDµ −
1

2
e~σµνFµν (2)

which follows from {γµ, γν} = 2ηµν where γµ are the gamma matrices, ηµν is the Minkowski metric,
σµν = (i/2) [γµ, γν ] and Fµν = ∂µAν − ∂νAµ is the field strength tensor we get [10](

DµDµ −
1

2
e~σµνFµν +m2c2

)
ψD (~x, t) = 0 (3)

Consider a constant magnetic field B pointing the in the z direction. Using gauge invariance we
can write A0 = 0, A1 = − 12Bx2 , A2 =

1
2Bx1, A3 = 0 or equivalently Ai = −εij3

B
2 xj = −

B
2 εijxj .

Here εijk and εij are the totally antisymmetric Levi-Civita tensors. εijk is +1 (−1) when i, j, k is
an even(odd) permutation of 1, 2, 3 and is zero otherwise and εij is +1 (−1) for i, j = 1, 2 (2, 1) and
is zero otherwise [10]. Note that ∂iAi = 0. We now have F12 = −F21 = ∂1A2−∂2A1 = B.Working
in the so called "weak field limit", i.e. dropping the ~A2 term, gives(

~2
(
1

c2
∂ 2
t − ∂ 2

i

)
+ ie~B (x1∂2 − x2∂1)− e~σ12B +m2c2

)
ψD (~x, t) = 0 (4)
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In the Dirac basis

σij = εijk

[
σk 0
0 σk

]
(5)

where the σk are the Pauli matrices [10]. In terms of two-component spinors φ and χ, ψD =
[
φ
χ

]
and for a slowly moving electron (in the Dirac basis) we can set χ = 0 and so finally(

~2
(
1

c2
∂ 2
t − ∂ 2

i

)
− eBL3 − e2BS3 +m2c2

)
φ (~x, t) = 0 (6)

Here L3 = −i~ (x1∂2 − x2∂1) is the orbital angular momentum and S3 = ~
2σ

3 is the spin angular
momentum, both in the z direction. More generally [10] we can write(

~2
(
1

c2
∂ 2
t − ∂ 2

i

)
− e ~B ·

(
~L+ 2~S

)
+m2c2

)
φ (~x, t) = 0 (7)

for a constant ~B field. Thus we see that the OAM, ~L, couples to the magnetic field as ~B · ~L
whereas the spin angular momentum, ~S, couples as 2 ~B · ~S and so the (non-radiatively corrected)
gyromagnetic ratio for orbital angular momentum gL = 1 whereas for spin angular momentum
gS = 2. This difference has the effect that electron helicity, i.e., the spin projected in the direction
of propagation, remains tangent to the trajectory, i.e, it rotates at the same rate that the electron
circulates in a magnetic field. We will see below that because gL = 1 this is not the case for electron
beams carrying axial OAM. Note that the values of gL and gS are a property of the Hamiltonian
and not of the wave function. The vortex wave function studied below, which carries nonzero axial
OAM, still couples to the magnetic field with a gL value of unity.

3 Path Integral Solution for Propagation in aMagnetic Field

We are interested in OAM and not spin and so we will drop the spin term in (7) and let φ (~x, t) be
a single component wave function. To reduce to the nonrelativistic case substitute

φ (~x, t) = e−imc
2t/~ψ (~x, t) (8)

with ψ (~x, t) slowly varying compared to exp
[
−imc2t/~

]
into (7) and dropping the ∂ 2

t ψ term we
get the standard Schrodinger equation(

i~∂t +
~2

2m
~∂2 +

e ~B · ~L
2m

)
ψ (~x, t) = 0 (9)

with ~L = −i~εijkx̂ixj∂k where x̂i is the unit vector in the i direction.
Because (9) is linear and first order in the time derivative the solution can be written in the

form

ψ (~x, t) =

∫
d3x′K (~x, t, ~x′, t′)ψ (~x′, t′) (10)

where K (~x, t, ~x′, t′) is called the "propagator" and the integral is nominally over all space. Also, the
fact that (9) is first order in time allows the propagator to be written as a path integral [10] [12] [13],
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i.e.,

K (~x, t, ~x′, t′) =

(~x,t)∫
(~x′,t′)

δ~x (t) exp

[
i

~

∫ tb

ta

dtL (~x (t) , ∂t~x (t) , t)
]

(11)

Here L (~x (t) , ∂t~x (t) , t) is the classical Lagrangian corresponding to the quantum Hamiltonian,
and the integral is over all paths or trajectories which go from ~x′ at time t′ to ~x at time t. The
Lagrangian corresponding to (9) has the form

L (~x (t) , ∂t~x (t) , t) =
1

2
m (∂t~x (t))

2 − e ~A (~x (t) , t) · ∂t~x (t) (12)

where ~A is the vector potential with the magnetic field ~B = ~∂ × ~A. Using the form for ~A given
above we get, for a constant magnetic field in the z direction,

L (~x (t) , ∂t~x (t)) =
m

2
(∂t~x (t))

2
+
eB

2
εijxi∂txj (t) (13)

It should be noted that the Lagrangian in (12) and (13) is the full Lagrangian, not the weak field
approximation. This can be seen simply by calculating the corresponding classical Hamiltonian

which yields H =
(
~p− e ~A

)2
/2m.with ~p = m∂tx (t) .

The solution for the propagator with this Lagrangian is straightforward [12] [13], indeed it’s given
as a problem in Feynman and Hibbs book [14]. Transform to a rotating frame with coordinated Xi

in the xy or 1, 2 plane by writing

xi = exp

[
eBt

2m
ε

]
ij

Xj ⇒
(
x1
x2

)
=

(
cos
[
eBt
2m

]
sin
[
eBt
2m

]
− sin

[
eBt
2m

]
cos
[
eBt
2m

])(X1

X2

)
(14)

In terms of the new variables the Lagrangian corresponds to free propagation in the z direction and
a harmonic oscillator in the Xi, i = 1, 2 directions with radian frequency eB/2m. The path integral
solutions for free propagation and for a harmonic oscillator are well known [12] [13]. Using these
results and transforming back to the non-rotating coordinates we get

K (~x, t, ~x′, t′) =
( m

2πi~T

)3/2 ω
2 T

sin
[
ω
2 T
] exp[ i

2~

(
m(z−z′)

2

T + mω
2 cot

[
ω
2 T
]
(xi − x′i)

2

+mωεijxix
′
j

)]
(15)

with

ω =
eB

m
(16)

which is the standard cyclotron frequency [13] and T ≡ t− t′. In (15) the combination ωT always
occurs divided by 2 and so we should expect various aspects of the wave function to evolve at half
the rate at which the electron circulates in the magnetic field.
Note that in the limit as ω → 0 the propagator in (15) reduces to the free propagator

Kfree (~r − ~r′, t− t′) =
(

m

2πi~ (t− t′)

)3/2
exp

[
im

2~
(xi − x′i)

2

t− t′

]
(17)

which is explicitly space and time translation invariant as it should be.
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4 Evolution of a Gaussian wave function with and without
OAM

The propagator given in (15) is Gaussian in form and so if we choose a Gaussian for the wave
function at t′ = 0 it will remain Gaussian. Also, in this case the integral in (10) can be evaluated
analytically.
First consider propagation perpendicular to the magnetic field. In this case let the initial

normalized wave function be a Gaussian centered at the origin and propagating in the x2 = y
direction

ψ0 (~r, 0) =
1√

πσ2
√
πL2

exp

[
−x

2 + z2

2σ2
− y2

2L2
+
i

~
py

]
(18)

where we have switched from the xi notation to the more convenient, at this stage, x, y, z notation
with ~r = xx̂+ yŷ + zẑ. This wave function is roughly σ in width in the x and z directions and has
length L in the y direction. If we specify the values of ω and the radius R of the classical orbit
of the electron then p = mωR. If we take σ and L to be much larger than the nominal de Broglie
wavelength of 2π~/p then we expect mininal "diffraction" effects to occur during propagation and
as shown explicitly below this is exactly the case. This initial wave function has zero OAM about
it’s direction of propagation, the y direction, since

Lyψ0 (~r, 0) = i~ (x∂z − z∂x)ψ0 (~r, 0) = 0 (19)

To generate axial OAM the so called ladder operator approach [15] is used. Consider an operator
A with eigenstate |a〉 such that A |a〉 = a |a〉 . We now want to generate a state |a+ 1〉 such that
A |a+ 1〉 = (a+ 1) |a+ 1〉 . To do this we only need to find an operatorB such that [A,B] = B since
then AB |a〉 = B |a〉+BA |a〉 = (a+ 1)B |a〉 and so the state B |a〉 = |a+ 1〉 , up to normalization
and phase factors. Noting that

[Ly/~, (∂x − i∂z)] = [i (x∂z − z∂x) , (∂x − i∂z)] = (∂x − i∂z) (20)

it follows that a state with 1 unit of axial OAM, ψ1 (~r, 0) , is given (up to normalization and phase
factors) by

ψ1 (~r, 0) = (∂x − i∂z)ψ0 (~r, 0) =
1

σ2
(−x+ iz)ψ0 (~r, 0) =

1

σ2
ρeiθψ0 (~r, 0) (21)

Here ρ =
√
x2 + z2 and θ increases in the counterclockwise direction when looking in the −y direc-

tion and is measured from the −x axis. Using the fact that i (x∂z − z∂x) = −i∂θ we immediately
see that Lyψ1 = ~ψ1.and so ψ1 carries one unit of axial OAM. The factor of ρ, which appears
automatically, is necessary since at ρ = 0 (= the y axis in this case) the phase exp [iθ] is not defined
and the wave function must vanish there.
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Substituting ψ0 (~r, 0) into (10) and using (15) gives

ψ0 (~r, t) = N

∫
d3r′ exp

 im
2~t (z − z

′)
2
+ imω

4~ cot
[
ωt
2

] (
(x− x′)2 + (y − y′)2

)
+ imω

2~ (xy′ − yx′)
− 1
2σ2

(
x′2 + z′2

)
− 1

2L2 y
′2 + imωR

~ y′


= N exp

[
im

2~t
z2 +

imω

4~
cot

[
ωt

2

] (
x2 + y2

)]
×
∫
d3r′ exp

[
αxx

′ + αyy
′ + αzz

′ − 1

2βx
x′2 − 1

2βy
y′2 − 1

2βz
z′2
]

= N exp

[
im

2~t
z2 +

imω

4~
cot

[
ωt

2

] (
x2 + y2

)]
×
√
(2π)

3
βxβyβz exp

[
1

2
βxα

2
x +

1

2
βyα

2
y +

1

2
βzα

2
z

]
(22)

where

N =
( m

2πi~t

)3/2 ωt
2

sin
[
ωt
2

] 1√
πσ2
√
πL2

αx = −
imω

2~
cot

[
ωt

2

]
x− imω

2~
y

αy = −
imω

2~
cot

[
ωt

2

]
y +

imω

2~
x+

imωR

~

αz = −
im

~t
z (23)

βx =

(
1

σ2
− imω

2~
cot

[
ωt

2

])−1
βy =

(
1

L2
− imω

2~
cot

[
ωt

2

])−1
βz =

(
1

σ2
− im

~t

)
To propagate ψ1 we can write

ψ1 (~r, t) = N

∫
d3r′K (~r, t, ~r′, 0)

(
∂x′ − i∂z/

)
ψ0 (~r

′, 0)

=
N

σ2

∫
d3r′K (~r, t, ~r′, 0) (−x′ + iz′)ψ0 (~r′, 0)

=
N

σ2
∂λ

∫
d3r′K (~r, t, ~r′, 0) exp [λ (−x′ + iz′)]ψ0 (~r′, 0)

∣∣∣∣
λ=0

(24)

The integral is still Gaussian and can be evaluated as above by letting αx → αx−λ and αz → αz+iλ
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in (22). Taking the derivative with respect to λ and setting λ = 0 then yields

ψ1 (~r, t) =
N

σ2
exp

[
im

2~t
z2 +

imω

4~
cot

[
ωt

2

] (
x2 + y2

)]
×
√
(2π)

3
βxβyβz (−βxαx + iβzαz) exp

[
1

2
βxα

2
x +

1

2
βyα

2
y +

1

2
βzα

2
z

]
= (−βxαx + iβzαz)

1

σ2
ψ0 (~r, t) (25)

with αx, βx, . . .the same as in (23).
Even though both these analytic solutions can be manipulated into somewhat more convenient

forms, this is not very illuminating and so we will simply plot these solutions for a set of conditions
which nicely illustrate the relevant aspects of their time evolution. On the other hand it is worth-
while to examine the factor (−βxαx + iβzαz) to get a better understanding of how it evolves and
controls the orientation of the OAM. Substituting from above we find, after some algebra,

f (~r, t) ≡ −βxαx + iβzαz =
cos
[
ωt
2

]
x+ sin

[
ωt
2

]
y(

sin
[
ωt
2

]
2~

imωσ2 − cos
[
ωt
2

]) + i z(
1− ~t

imσ2

) (26)

We see that f (~r, 0) = −x+ iz at t = 0, as it should, and that it rotates in time in the xy plane at
a radian frequency of ω/2. The origin of this factor is obvious. In operator notation, ignoring the
1/σ2, (21) becomes

|ψ1〉 = (−X+ iZ) |ψ0〉 (27)

The time evolution is given by

e−iHt/~ |ψ1〉 = e−iHt/~ (−X+ iZ) |ψ0〉

=
(
e−iHt/~ (−X+ iZ) e+iHt/~

)
e−iHt/~ |ψ0〉

= f

(
→
R, t

)
e−iHt/~ |ψ0〉 (28)

where H =

(
→
P− e ~A

(
→
R

))2
/2m is the quantum Hamiltonian corresponding to the Lagrangian

(13). Note this is the full Hamiltonian, not the weak field approximation.
The position of the node of ψ1 (~r, t) follows from the solution to f (~r, t) = 0. At t = 0 this is the

y axis as shown above. For arbitrary t we have the solution

y = − cot
[
ωt

2

]
x

z = 0 (29)

This solution is illustrated in Figure 1 for several values of t. This "nodal line" rotates only by
π during one full period, τ = 2π/ω, of the electron cyclotron orbit and since this factor is the
origin of the OAM carried by ψ1 this shows explicity that the OAM rotates at half the cyclotron
frequency, i.e., gL = 1. This also shows that the OAM is axially oriented only at times t = nτ, with
n = 0, 1, 2, · · · , and its direction switches between being parallel and antiparallel to the direction of
propagation at each of these times.
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Figure 1: The graph shows the nodal lines (red) at different positions in the electron orbit. The
OAM lies along the nodal lines and thus rotates at half the cyclotron frequency ω = eB/m.
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Note that ψ0 (~r, t) and ψ1 (~r, t) are not simply propagating Gaussian envelope functions multi-
plied by a propagating plane wave factor of the form exp [i~p · ~r/~− iEt/~] with |~p| constant (but
rotating at the radian frequency ω) and E = |~p|2 /2m. For both wave functions the de Broglie
wavelength varies in time. This is to be expected since the coupling to the vector potential con-
tributes an extra phase to the wave function of the form −i/~

∫ t
0
dt ~A (~r) · ∂t~r (t) which varies with

position in generally an nonlinear fashion. Figures 2 and 3 show slices of the modulus squared and
the real parts of ψ0 and ψ1 in the xy plane at different positions in the electron orbit. The values
chosen for σ, L, ω and R are such that the size of the wave packet at t = 0, L in the y direction
and σ in the x direction, are both much larger than the wavelength (so that diffraction effects are
minimal) and R is much larger than L. The actual ratios used for the plots are R = 103L, L = 10σ
and σ ' 1052π~/mω hence the spatial range of the Re [ψ0] and Re [ψ1] plots is about 5 orders of
magnitude smaller than for the |ψ0|2 and

∣∣ψ21∣∣ plots so that the phase variation is visible. In Figure
2 we see that the long axis of the wave function tracks the nodal line and the spatial extent of the
wave function varies with period τ and thus the length and width return, up to diffraction effects,
to their initial values at every t = τ, 2τ, 3τ, · · · . This periodic variation in the spatial extent of the
wave function can be traced back to the fact that in the rotating frame the Lagrangian is that of
a harmonic oscillator. The free propagation part of the Langrangian, m (∂tx)

2
/2 causes the wave

function to expand or diffract as it propagates. The harmonic oscillator part, mω2~x2/2 causes the
wave function to contract and unless these two effects are precisely balanced the wave function
will oscillate in size This is exactly analogous to the propagation of a paraxial Gaussian optical
beam.centered on the z axis and propagating in the z direction in a medium with an index of re-
fraction of the form n (x, y) = n0− c

(
x2 + y2

)
, i.e, a harmonic osciallator potential. In the paraxial

approximation the propagator for the photon beam has the same Gaussian form as the propagator
for the harmonic oscillator. The quadratic variation of the index of refraction will cause the beam
to focus or shrink in size as it propagates whereas diffraction effects cause the beam to expand as it
propagates. If the beam is large, so that the focusing effect dominates, then the beam will shrink
in size as it propagates. Eventually it reaches a size where the diffraction effect dominates and
it begins to expand. This process repeats itself causing the beam to oscillate in size with a fixed
period along its length [16]. These oscillations can be prevented if the size of the beam is fine tuned
so that the diffraction and focusing effects exactly cancel out [16]. Figure 3 shows the propagation
of the wave function ψ1 carrying a single unit of OAM. The node in the center of the wave function
maintains its alignment on the nodal line during each cycle. The spiral form the phase of ψ1 is
apparent in the Re [ψ1] plots. Clearly the OAM is rotating at half the cyclotron frequency ω.

Now consider propagation parallel to the magetic field. In this case we let

ψ0 (~r, 0) =
1√

πσ2
√
πL2

exp

[
−x

2 + y2

2σ2
− z2

2L2
+
i

~
pz

]
(30)
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Figure 2: Slices in the xy plane of |ψ0|2 and Re [ψ0] at different positions around the cyclotron orbit
where ψ0 is a Gaussian wavepacket carrying 0 axial orbital angular momentum(OAM). The values
chosen for the width σ and length L of the wavepacket, the cyclotron frequency ω = eB/m, and
the radius of the cycloctron orbit R are such that the size of the wave packet at t = 0 (L in the y
direction and σ in the x direction) are much larger than the wavelength so that diffraction effects
are minimal. All the plots are the same fixed spatial scale with that of the Re [ψ0] plots being about
5 orders of magnitude smaller than the |ψ0|2 plots so that the phase of the wavepacket is visible.
At t = 0.5τ the wavepacket would be too small to be seen at this fixed spatial scale and so it is
shown at times t = 0.4τ and t = 0.6τ instead.
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Figure 3: Slices in the xy plane of |ψ1|2 and Re [ψ1] at different positions around the cyclotron orbit
where ψ1 is a Gaussian wavepacket carrying 1 unit axial orbital angular momentum(OAM) oriented
in the y direction at t = 0. The values chosen for the width σ and length L of the wavepacket,
the cyclotron frequency ω = eB/m, and the radius of the cycloctron orbit R are the same as in
Figure 2, i.e., they are such that the size of the wave packet at t = 0 (L in the y direction and
σ in the x direction) are much larger than the wavelength so that diffraction effects are minimal.
All the plots are the same fixed spatial scale with that of the Re [ψ1] plots being about 5 orders of
magnitude smaller than the |ψ1|2 plots so that the phase of the wavepacket is visible. At t = 0.5τ
the wavepacket would be too small to be seen at this fixed spatial scale and so it is shown at times
t = 0.4τ and t = 0.6τ instead.
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and

ψ0 (~r, t) = N

∫
d3r′ exp

 im
2~t (z − z

′)
2
+ imω

4~ cot
[
ωt
2

] (
(x− x′)2 + (y − y′)2

)
+ imω

2~ (xy′ − yx′)
− 1
2σ2

(
x′2 + y′2

)
− 1

2L2 z
′2 + ip

~ z
′


= N exp

[
im

2~t
z2 +

imω

4~
cot

[
ωt

2

] (
x2 + y2

)]
×
∫
d3r′ exp

[
αxx

′ + αyy
′ + αzz

′ − 1

2βρ

(
x′2 + y′2

)
− 1

2βz
z′2
]

= N
√
(2π)

3
β 2
ρ βz

× exp


(
imω
4~ cot

[
ωt
2

]
− 1

2βρ

(
mω

2~ sin[ωt2 ]

)2)(
x2 + y2

)
−βz

(
m
~t
)2 (

z − p
m t
)2
+ im

2~tz
2

 (31)

where N is the same as in (23) but now

βρ =

(
1

σ2
− imω

2~
cot

[
ωt

2

])−1
βz =

(
1

L2
− im

~t

)
(32)

Because ψ (~r, t) depends on x and y only in the combination ρ2 = x2 + y2 it follows that the initial
Gaussian wave function chosen here does not pick up angular momentum as it propagates along the
magnetic field. In fact for propagation parallel to the magnetic field the axial OAM of an eigenstate
of Lz is conserved. This follows directly from

[Lz,H] = 0 (33)

where again H =

(
→
P− e ~A

(
→
R

))2
/2m and Ai= −B2 εijXj . Indeed it can be shown that H =

1
2m

→
P
2

− eB
2mLz +

e2B2

2m

(
X2 +Y2

)
which obviously yields (33).

5 Conclusion

Using the exact path integral solution for the propagator in a constant magnetic field we have
derived the evolution of a Gaussian wave function and shown explicitly that the (non-radiatively
corrected) gyromagnetic ratio gL for OAM is unity. This must be the case since gL is a property of
the Hamiltonian and not of the wave function.
The results presented above lead to a novel version of the Aharonov-Bohm effect [17]. Consider

a long thin solenoid aligned along the z axis. Outside the solenoid (far from the ends) ~A varies as
1/ρ = 1/

√
x2 + y2 and so ~B is zero outside. Inside the solenoid ~A varies as ρ and so ~B is constant

and nonzero. A Gaussian wave function like those considered above carrying nozero OAM that
propagates along the z axis has a node on the z axis. In fact wave functions carrying large values of
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OAM have a very large region around the z axis where the wave function is effectively zero [8]. As
in the standard Aharonov-Bohm experiment [17] this is a case where there is no overlap between
the wave function and the magnetic field. The wave function only overlaps with the magnetic
vector potential. Hence the presence of the solenoid will cause a change in how the wave function
propagates relative to the no solenoid case. This effect will be predominantly a change in the focus
position of the wave function. Experimental verification of this would provide yet another example
of the fact Aµ is the fundamental quantity and not ~E and ~B.
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