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ABSTRACT

A straightforward analytic model of resist line edge roughness is presented which predicts all the known scaling
laws as well as the shape of the experimentally seen frequency content or power spectrum of the roughness. The
model implies there are strong basic limitations to achieving, simultaneously, low roughness, low dose and high
resolution in any standard chemically amplified resist process. A simple model of how roughness maps to device
performance is also presented.

1. INTRODUCTION

As shown in Cobb, et. al.1 and elsewhere2−6 resist line edge roughness (LER) is typically dominated by spatial
frequencies lower than roughly 20 to 30 cycles/micron. The rms roughness, σLER, on the other hand, is typically
on the order of only a few nm. Thus the roughness is long range compared to its amplitude which indicates
it should have little to do with molecular weight or chemical statistics. In fact, as has recently been shown by
Brainard, et. al.6 and Cutler, et. al.7 LER is relatively independent of molecular weight, at least for one class of
chemically amplified resists. This is not to say that such effects do not contribute at all to LER. They no doubt
do contribute. But, given the fact that almost the entire value of σLER comes from low frequencies it follows
that high frequency effects cannot be the dominant contributors and to understand LER we must understand the
origin of the low frequency content. Here, a straightforward analytical model of LER is presented which predicts
the low frequency dominated shape of the roughness power spectrum and also explains the standard scaling laws
that have been seen experimentally. The model is fully three dimensional with resist line edges being treated as
two dimensional surfaces.

The model consists of two parts. First, the aerial image, properly normalized, is taken as the probability
distribution for where a photon will be absorbed and release an acid. Up to saturation effects, the joint probability
to release N acids is the product of N single acid release probabilities as is consistent with the rules of quantum
mechanics. Second, the shape of the post exposure bake (PEB) deprotection “blur” which occurs around each
released acid is derived from the reaction diffusion equations8 and combined with the exposure statistics to yield
the deprotection statistics. Resist development, implemented using what can be viewed as a large scale equivalent
to the critical ionization model9−12 , yields the complete functional form for the parametric dependence and
frequency content of the LER. Similar approaches to modeling and understanding LER have been presented by
Fukuda13,14 and others.6,15−17 Here, the ideas incorporated in those approaches are extended and combined to
yield an analytical representation of LER.

The net perspective of the model is that the dominant contributor to LER is the randomness in the positions
of acids released during exposure combined with the superposition of the resist deprotection “blurs” generated
around each released acid during the PEB. One consequence of the model is that it appears that it will be
extremely difficult, if not essentially impossible, in any standard chemically amplified resist process, to achieve,
simultaneously, low dose, low LER and high resolution. Such a conclusion, if true, has important implications
for the future of lithography.

Given the conceptual simplicity of the model it is interesting that it automatically incorporates some “extra”
effects. First, the intensity distribution in exposure tools commonly covers an area which is large compared to
individual image features, e.g., a millimeter or larger exposure area as compared to fractions of a micron for
individual features. It follows directly from the probability distribution used by the model that, for individual
features, the number of acids released obeys Poisson statistics even if the overall total number of released acids
is fixed. Hence the model automatically incorporates shot noise effects and they do not have to be put in by
hand. Note that although real exposure tools don’t count photons they are designed to operate so that the total
dose, i.e., the total number of photons, N , absorbed across the entire exposure field is controlled to a given
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Figure 1. Data from Cobb, et. al.1 showing that LER is dominated by low frequencies for various resists and processing
conditions. The flattening of the spectrum a high frequencies corresponds to pixel-to-pixel white noise in the SEM images.
Given that σ2LER is the area under the spectrum it follows that almost all the contribution to σLER comes from length
scales longer than roughly 30nm. This specific data is for EUV, but the same frequency content is seen in LER for 248,
193 and 157nm resists.2−6

value. Of course, over the nominal exposure area N is extremely large and so its fractional fluctuation, 1/
√
N is

much smaller than the dose control requirement. Second, in most, but certainly not all current exposure tools,
the resist blur is small compared to the image resolution. In the model this condition leads automatically to
the standard reciprocal of the image slope dependence of LER seen in many LER models, i.e., the lower the
resolution the worse the LER. But, the model automatically switches behavior in the opposite case where the
blur is larger and shows that LER will still be present even for infinite edge slope but will follow a different
scaling law. Third, the model yields the standard 1/

√
dose dependence seen in essentially all LER models, but

again, without explicitly imposing Poisson statistics. This scaling law implies that LER should go to zero in the
limit of a large, effectively infinite, dose. But, this ignores saturation effects which imply that the dose must
asymptotically approach a maximum value dependent on the quantum efficiency and acid loading of the resist
and thus LER must approach a fixed nonzero value for fixed acid loading even for infinite dose. Finally, the
model explicitly shows that the PEB blur range sets the frequency content of the roughness and that σLER
should decrease slowly with increasing blur range, all else being held fixed. Each of these results is described
below.

2. EXPOSURE AND ACID RELEASE STATISTICS

Consistent with the rules of quantum mechanics the probability for a photon to be absorbed, and release an
acid, at position ~r = (x, y, z) inside the volume of the resist is proportional to the local dose E (~r) = εtexpI (~r)
where ε is the quantum efficiency for acid release, texp is the exposure time and I (~x) the image intensity. The
exact formula is somewhat complicated and depends on various parameters18 but this form is sufficient for our
purposes. Of course for an acid to be released at ~x, a photoacid generator (PAG) must be present initially at
that position. The probability distribution of the PAG is nominally uniform throughout the resist volume and if
the dose is below saturation then we can ignore the PAG statistics and we have that the probability for an acid
to be released at ~x during exposure is given by

p (~r) =
E (~r)R

V
E (~r) d3r

=
I (~r)R

V
I (~r) d3r

(1)



where d3r = dxdydz The integral in the denominator normalizes the probability distribution so that.
R
V
p (~r) d3r =

1, with the integral taken over the volume V = AT of the resist being exposed. Here A is the total exposed area
(again on the order of square mm) and T is the thickness of the resist.

Up to saturation effects which imply that a given acid cannot be released twice, the probability distribution
for N acids to be released at positions ~r1, ~r2, · · · , ~rN is given by

P (~r1, ~r2, · · · , ~rN) = p (~r1) p (~r2) · · ·p (~rN) (2)

which is automatically normalized as
R
V
P (~r1, · · · , ~rN) d3r1 · · · d3rN = 1. This probability distribution is consis-

tent the old quantum experiment of sending photons through, say, a double slit one at a time and watching the
interference intensity distribution get filled in discretely, step-by-step, with each absorption.19,20

Importantly, even with the net number of released acids fixed at N on a large scale, the probability distribution
defined above automatically incorporates shot noise into the model on the scale of individual features. The total
number of absorptions in a volume v = aT where a is the area of a small feature is given by

PN
m=1 θv (~rm)

where θv (~r) = 1 for ~r in v and is zero otherwise. The probability Qn for n absorptions in v is then given by

the integral of P (~r1, · · · , ~rN) over V times a Kronecker delta-function δ
³
n,
PN
m=1 θv (~rm)

´
which equals 1 for

n =
PN
m=1 θv (~rm) and is zero otherwise and thus counts only those cases where

PN
m=1 θv (~rm) = n, i.e.,

Qn =

Z
V

P (~r1, · · · , ~rN ) δ
Ã
n,

NX
m=1

θv (~rm)

!
d3r1 · · · d3rN

Substituting the Fourier representation of δ (n,m) , which is 1/2π
R 2π
0
exp (iω (n−m)) dω, using the binomial

theorem and defining q as the probability for getting 1 acid release in volume v, i.e., q =
R
v
p (~r) d3r gives

Qn =
1

2π

Z 2π

0

"
eiωn

Z
V

P (~r1, · · · , ~rN) exp
Ã
−iω

NX
m=1

θv (~rm)

!
d3r1 · · · d3rN

#
dω

=
1

2π

Z 2π

0

eiωn
¡
qe−iω + (1 − q)¢N dω

=
NX
m=0

N !

m! (N −m)!q
m (1 − q)N−m 1

2π

Z 2π

0

eiω(n−m)dω

=
N !

n! (N − n)!q
n (1− q)N−n

For a nominal dose, N is extremely large since A is large. For a small feature with area a ¿ A we have, on
average, that q ¿ 1 and n¿ N. In this limit N !/ (N − n)!→ Nn and (1 − q)N−n → (1 − q)N ' exp [−Nq] and
thus

Qn ' (Nq)
n

n!
e−Nq (3)

which is the Poisson distribution. Hence even with a fixed total number of released acids on the scale of the
exposure area A, the Poisson distribution, i.e., shot noise, still controls the statistics of the number of acids
released in any given small feature with the average number being Nq as one would expect.

3. DEPROTECTION STATISTICS

The deprotection density, after PEB, surrounding an acid released at position ~r is derived in the Appendix.
Neglecting saturation effects the net deprotection density for N acids released at positions ~r1, ~r2, · · ·~rN is then
given by the sum of the corresponding deprotection blurs as

ρnetD (~r,~r1, · · ·~rN) =
NX
n=1

ρD (~r − ~rn) (4)



Note that ρnetD depends explicitly on the acid release positions ~r1, ~r2, · · ·~rN . We assume that all its statistical
behavior follows from statistics of the ~r1, · · ·~rN as given by P (~r1, · · ·~rN) . In other words, it is the randomness
in the positions of the acid release that generates the dominant contribution to LER.

This approach does ignore the nanoscale chemical statistics or atomistic roughness which, although it must
contribute as discussed above and elsewhere.21,22,23 is apparently not the dominant generator of LER. In effect,
here we are taking the deprotection distribution ρD (~r) as a continuous smooth function whereas, in fact, it
should be treated as a probability distribution and sampled appropriately. Treating it as a smooth non-statistical
function can be justified by the fact that the model developed below does a good job predicting the experimentally
seen behavior of LER including the functional form of its frequency content.

Finally, it should be noted that treating resist development as the threshold of the convolution of the image,
in the resist, with a resist deprotection blur function has been shown to do a good job describing real resist
behavior.24−30

4. LER STATISTICS

For our purposes, the critical ionization model9−12 can be interpreted to state that the edge of a developed resist
line is determined implicitly by

τ = ρnetD (~redge, ~r1, · · · , ~rN ) (5)

where τ is the threshold deprotection density for resist development and ~redge maps out the entire shape and po-
sition of the two dimensional resist surface for the given values of ~r1, ~r2, · · · , ~rN . Position on the two dimensional
surface represented by ~redge requires two independent coordinates. Given the orientation of the edge considered
below (see Figure 2) we will be able to take these coordinates to be x and z with x the horizontal position along
a resist edge and z the vertical position. The appropriate value of τ to use in any given case depends on the net
combination of the resist process conditions. For our purposes we don’t need an explicit value of τ and require
only the implicit relation given above.

The average resist surface is defined by integrating ρnetD times P (~r1, · · · , ~rN) over V , setting the result equal
to τ and solving for ~redge. Doing the integration yields

τ =

ρnetD (~redge, ~r1, · · · , ~rN)

®
=

Z
V

ρnetD (~redge, ~r1, · · · , ~rN )P (~r1, · · · , ~rN ) d3r1 · · · d3rN

= N

Z
V

ρD (~redge − ~r) p (~r) d3r

Thus, on average, the net resist surface is determined implicitly by the convolution of the resist blur with the
properly normalized image intensity inside the volume of the resist, just as one would expect.24−30

To solve for ~redge consider the specific case of a line edge oriented along the x axis in the region of y = 0 so
that I (~r) = I (y) as shown in Figure 1. Thus p (~r) = p (y) and so only y is determined from the above equation
and we have

τ =

ρnetD (~redge, ~r1, · · · , ~rN )

®
=⇒ τ =


ρnetD ((x, yedge, z) , ~r1, · · · , ~rN )

®
(6)

with x and z being independent and used to label position on the edge itself.

The above equation ignores line end effects as well as top and bottom (of the resist) effects. This is consistent
with the experimental definition of LER which works with only a finite portion of a longer line and hence
explicitly stays away from line ends. The neglect of top and bottom effects is justifiable when the resist is much
thicker than the range of ρD as is often the case as resist thicknesses are generally greater than 100nm and the
width of ρD is on the order of 30 to 50nm. Experimentally, some change in the character of LER near the top
and bottom of the resist has been seen31 but this change is certainly not large. Also, topcoats and bottomcoats
are often acid loaded to help reduce “t-topping” and footing which also reduces top and bottom boundary effects.
Resist absorption can be included by allowing I to depend on z as well as y. In any case details such as these
are not relevant for understanding the general cause and properties of LER, which is our present purpose.
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Figure 2. Geometry used for the derivation of LER given in the text. LER is reprsented as fluctuations in the resist
surface δy about the nominal resist surface at y = 0.

Without loss of generality we can take the position of the average edge to be at y = yedge = 0 with x covering
a finite range along the line and z ranging from 0 to T over the resist thickness. Geometrically, as shown in the
bottom of Figure 2 this is a flat vertical plane located at y = 0.

Fluctuations in ρnetD ((x, yedge, z), ~r1, · · · , ~rN ) about its average value due to the statistical variation in the
acid release positions ~r1, · · · , ~rN cause the resist edge position to fluctuate in order to maintain the critical
ionization criteria. Since LER is on the order of a few nm 1σ we can determine these fluctuations as follows.
The fluctuation of ρD about the nominal average edge value is given by

δρD (x, z, ~r1, · · · , ~rN) ≡ ρD ((x, yedge, z) , ~r1, · · · , ~rN )−

ρnetD ((x, yedge, z) , ~r1, · · · , ~rN )

®
= ρD ((x, yedge, z) , ~r1, · · · , ~rN )− τ

In order to compensate for this fluctuation and stay at the value τ the surface must shift by δy (x, z, , ~r1, · · · , ~rN)
where the the position dependence of δy follows from the position dependence of δρD. The critical ionization
criteria then becomes

τ =

ρnetD ((x, yedge + δy, z) , ~r1, · · · , ~rN)

®
+ δρD (x, z, ~r1, · · · , ~rN)

=

ρnetD ((x, yedge, z) , ~r1, · · · , ~rN)

®
+

·
∂

∂y


ρnetD ((x, y, z) , ~r1, · · · , ~rN)

®¸
y=yedge

δy (x, z, ~r1, · · · , ~rN )

+δρD (x, z, ~r1, · · · , ~rN)
Note that the first term on the right hand side is just τ . Solving for δy, substituting for δρD and setting yedge = 0
yields

δy (x, z, ~r1, · · · , ~rN) = − ρD ((x, 0, z) , ~r1, · · · , ~rN )− τ

∂ hρnetD ((x, 0, z) , ~r1, · · · , ~rN)i /∂yedge (7)

Again, the dependence of δy on ~r1, · · · , ~rN is included specifically since the exact position and shape of the surface
as defined by δy depends on the exact positions of the released acids before PEB. The term in the denominator
has already been averaged and hence it does not depend on ~r1, · · · , ~rN . In the denominator we must remember
to set yedge = 0 only after taking the derivative.



Taking the expectation value of Eq. (7) yields

hδy (x, z, ~r1, · · · , ~rN )i = − hρD ((x, 0, z) , ~r1, · · · , ~rN)− τi
∂ hρnetD ((x, 0, z) , ~r1, · · · , ~rN)i /∂yedge = 0 (8)

as expected.

Letting ~redge = (x, 0, z) and ~r 0edge = (x0, 0, z0) be two positions on the average edge, the autocorrelation
function of the roughness is given by

hδy (x, z) δy (x0, z0)i =
h(ρD ((x, 0, z) , ~r1, · · · , ~rN)− τ) (ρD ((x

0, 0, z0) , ~r1, · · · , ~rN)− τ)i
(∂ hρnetD ((x, 0, z) , ~r1, · · · , ~rN)i /∂yedge)2

=
−τ2 +Pn,m

R
ρD (~redge − ~rn) ρD

³
~r 0edge − ~rm

´
p (~r1) · · · p (~rN ) d3r1 · · ·d3rN³

N
R
ρD

³
~redge − ~R

´
∂p
³
~R
´
/∂Y d3R

´2
=
−τ2 + (1− 1/N) τ2 +N R ρD ³~redge − ~R´ ρD ³~r 0edge − ~R´ p³~R´ d3R³

N
R
ρD

³
~redge − ~R

´
∂p
³
~R
´
/∂Y d3R

´2
=

1

N

R
ρD

³
~redge − ~R

´
ρD

³
~r 0edge − ~R

´
p
³
~R
´
d3R³R

ρD

³
~redge − ~R

´
∂p
³
~R
´
/∂Y d3R

´2 (9)

in the limit of large N. Here, to avoid confusion, ~R = (X, Y, Z) is used as the integration variable. The above

form follows from using
R
ρD

³
~redge − ~R

´
p
³
~R
´
d3R =

R
ρD

³
~r 0edge − ~R

´
p
³
~R
´
d3 ~R = τ/N and the denominator

has been rewritten usingZ ∂ρD

³
~redge − ~R

´
∂yedge

p
³
~R
´
d3R


yedge=0

= −
Z ∂ρD

³
~redge − ~R

´
∂Y

p
³
~R
´
d3R

=

Z
ρD

³
~redge − ~R

´ ∂p
³
~R
´

∂Y
d3R

where the last step follows by integration by parts and yedge = 0 on the right-hand side.

To make further progress we must evaluate the above integrals. This can be done numerically for any given
case and it can be done analytically for particular functional dependencies. Here we will first approximate the
integrals assuming just the generic properties of a blur shape to obtain the overall scaling law dependence of the
mean square roughness on various parameters. Then, using the functional form of the deprotection distribution
derived in the Appendix we will derive the expected shape of autocorrelation function of the LER which, when
Fourier transformed, yields the frequency content or equivalently the power spectrum of the LER.

The mean square roughness σ2LER is given by
D
δy (x, z)2

E
. To simplify the derivation let I (~r) = Ioi (~r) with

i (~r) normalized to 1 in the middle of large features, e.g. open frame so that i (~r) takes values in the range 0 to a
little greater than 1, to allow for diffraction ringing and Io is the open frame image intensity in units of incident
photons/(area × time) . The factors of Io cancel in the definition of p (~r) and so p (~r) = i (~r) /

R
V i (~r) d

3r. All
finite regions where i (~r) is strictly zero don’t contribute and so, without loss of generality, we can restrict V to just
those regions where i (~r) 6= 0. Assuming a reasonably transparent resist it follows that RV i (~r) d3r ' fV = fAT
where f corresponds roughly to the pattern density. To simplify the derivation of how σLER scales with various
parameters we assume here an on-off deprotection blur shape, i.e., ρD (~r) = ρ̄D = non-zero constant for r ≤ RPEB
and is 0 outside RPEB. (The derivation of the LER power spectrum given below will use the full form for ρD
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Figure 3. There are two different resolution regimes relevant for discussing LER. On the left the image has lower resolution
than the resist. On the right this is reversed and the resist has lower resolution than the image. The effect of both cases
on LER is discussed in the text.

derived in the Appendix.) Using this we haveZ
V

ρD

³
~redge − ~R

´2
p
³
~R
´
d3R ≈ 1

fV

Z
V

ρD

³
~redge − ~R

´2
i
³
~R
´
d3R

≈
µ
iedgeρ̄

2
D

f

¶µ
VD
V

¶
(10)

where VD = 4πR3PEB/3 ' 4R3PEB is the volume of the deprotection blur. The resist diffusion blur or simple
resist blur RPEB is given by RPEB = (DtPEB)

1/2 where D is the diffusion constant and tPEB is the PEB time.

The denominator in Eq. (10) has two generic forms depending on the relative scales of RPEB and the image
resolution as shown in the left and right graphs in Figure 3. If RPEB is much smaller than the image resolution
then the image edge slope is roughly constant over the range 2RPEB and we haveZ

V

ρD

³
~redge − ~R

´
∂p
³
~R
´
/∂Y d3R ≈ 1

fV

Z
V

ρD

³
~redge − ~R

´
∂i
³
~R
´
/∂Y d3R

≈ (∂⊥iedge)
µ
ρ̄D
f

¶µ
VD
V

¶
(11)

where ∂⊥iedge indicates the image edge slope in the direction perpendicular the edge evaluated at the nominal
edge position.

On the other hand, if the image has higher resolution than the blur then ∂i
³
~R
´
/∂Y ' δ

³
Y − yimageedge

´
'

δ (Y ) with the image edge position taken as yimageedge ' yedge = 0 in which caseZ
V

ρD

³
~redge − ~R

´
∂p
³
~R
´
/∂Y d3R ' 1

fV

Z
V

ρD

³
~redge − ~R

´
∂i
³
~R
´
/∂Y d3R

'
µ
ρ̄D
f

¶µ
AD
V

¶
(12)

where AD ' πR2PEB = the blur area. This result shows that even in the limit of infinite edge slope, LER
will not vanish but instead will follow a scaling law independent of the image edge slope.

Finally, combining the above results with the total number of acids released, which is given by

N = ε

Z
A

E (x, y, T ) dxdy = εIotexp

Z
A

i (x, y, T ) dxdy ≈ εIotexpfA = εEofV/T (13)



where Eo = Iotexp is the open frame dose and using Eo = Eedge/iedge, we have

σLER ≈

vuuuut T
³
iedgeρ̄2D

f

´¡
VD
V

¢
ε
³
Eedge
iedge

´
fV (∂⊥iedge)

2
³
ρ̄D
f

´2 ¡
VD
V

¢2
≈

µ
iedge

∂⊥iedge

¶s
T

εEedgeVD

≈
µ
iedge

∂⊥iedge

¶s
T

εEedge4R
3
PEB

(14)

Although this formula is meant to be just a scaling law, the approximations used to obtain it are not too extreme
and so we should expect it to be approximately numerically correct. Accurate numerical values of course require
a detailed numerical evaluation of Eq. (9) with ~redge = ~r 0edge. In the high resolution case Eq. (12) must be used
instead of Eq. (11) in which case the same result is obtained as above but with 1/∂⊥iedge replaced by RPEB.
This result will be discussed in detail in the next section.

To evaluate the functional form of the LER frequency content, i.e., the shape of the power spectrum, we can
ignore any overall constants or normalization and so only need to consider the numerator in Eq. (9) In the region
of interest p (~r) = p (y) and using the form for ρD derived in the Appendix for three dimensions yieldsR

ρD

³
~redge − ~R

´
ρD

³
~r 0edge − ~R

´
p
³
~R
´
d3R

=

Z
ρD (x−X,−Y, z − Z) ρD (x0 −X,−Y, z0 − Z) p (Y ) d3R

=
1

(2π)4

Z
dβxdβzdβydβ

0
y

(Ã
1 − exp £−tPEBD ¡β2x + β2z + β2y

¢¤
D
¡
β2x + β2z + β2y

¢ !Ã
1− exp £−tPEBD ¡β2x + β2z + β02y

¢¤
D
¡
β2x + β2z + β02y

¢ !

× exp [iβx (x− x0) + iβz (z − z0)]
Z
p (Y ) exp

£−i ¡βy + β0y
¢
Y
¤
dY

¾
In the region of the edge p (Y ) is, to a good approximation a linear function, i.e., p (Y ) = pedge + sY where
s = ∂pedge/∂Y is a constant and thereforeZ

p (Y ) exp
£−i ¡βy + β0y

¢
Y
¤
dY =

Ã
pedge + si

∂

∂β0y

!
2πδ

¡
βy + β0y

¢

Noting that the factor in parentheses
µ
1−exp

h
−tPEBD~β2

i
D~β

2

¶
is a function only of β2y and, calling it f

¡
β2y
¢
, we haveZ

dβydβ
0
yf
¡
β2y
¢
f
¡
β20y
¢ ∂

∂β0y
δ
¡
βy + β0y

¢
= −

Z
dβyf

¡
β2y
¢ ∂

∂βy
f
¡
β02y
¢
= 0

and so the term proportional to s makes no contribution. The autocorrelation function then reduces to

hδy (x, z) δy (x0, z0)i ≡ σ2LERC (x− x0, z − z0)

=
σ2LER
K

Z
d3βeiβx(x−x

0)+iβz(z−z0)
Ã
1− exp £−R2PEB ¡β2x + β2z + β2y

¢¤
R2PEB

¡
β2x + β2z + β2y

¢ !2

where K = 4π
¡
2
√
π −√2π¢ /R3PEB ' 4π/R3PEB is a normalization constant chosen so that C (0, 0) = 1. Note

that C depends only on the coordinate differences x−x0 and z− z0 as expected. The frequency content or power
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Figure 4. LER frequency spectrum predicted by the model, Eq. (15), normalized to unity for small β for three values of
RPEB. The shape compares well to measured LER frequency distributions such as those shown in Figure 1.
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 (15)

This function, normalized to unity for small β, is plotted in Figure 4 for RPEB = 10, 20 and 30 nm. Clearly
this matches the shape of the frequency content of LER seen experimentally implying that the model presented
here is capturing the dominant contribution to LER. Note that the resist sidewall roughness as described by the
above formula is isotropic as seen experimentally.31

Fourier transforming the power spectrum yields the shape of the autocorrelation function. This is shown for
one dimension in Figure 5. The horizontal axis is in units of RPEB indicating the autocorrelation length defined
as the value of x where C drops to 1/e of its peak value is roughly RPEB/

√
2.

5. DISCUSSION

The scaling-law result for σLER given in Eq. (14) contains the “known” LER dependencies: proportionality to
the reciprocal of the image log slope and proportionality to 1/

√
dose as seen in many studies.32,33 The dose here

is the dose at the line edge. Thus, the 1/
√
dose dependence will not be seen if the dose is varied simply by over

exposing or under exposing a given image with a given resist since the resist edge will move so as to remain at
nominally same dose value. The variation in LER which occurs with such over exposing or under exposing is
due rather to the edge moving to positions with different image slope values and can be understood graphically
as shifting the resist blur function left and right relative to the image slope in Figure 3. This shift reduces the
contribution to the integrals in both Eqs. (11) and (12) and hence increases the LER. The effect this has on



1 2 3

1

0.71

0.367

Figure 5. The autocorrelation function derived from the analytic form of the power spectrum. The horizontal axis is in
units of RPEB . The impact of the finite correlation length on the device performance is discussed in the text.
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Figure 6. The graph on the left shows, schematically, the LER behavior predicted by the model when the resist edge
is shifted with respect to the image edge as would happen when over dosing or under dosing a given resist. Depending
on the image shape and flare level the curve can be non-symmetric and/or shifted horizontally. The graph on the right
shows, schematically, the LER behavior predicted by the model if the resist is altered so that different doses are required
to keep the resist edge in the same position with respect to the image edge.

LER is shown schematically in the left graph in Figure 6. To see the 1/
√
dose dependence requires varying the

resist and/or the resist process, such as, for example, by changing base loading, so that the edge stays fixed at
the same position relative to the image for the different dose values.6 Finally, as mentioned in the introduction,
for very large doses we should expect the 1/

√
dose behavior to saturate which means LER will cease to decrease

with increasing dose.

As discussed above the image log slope dependence is present only when the blur is short range compared to
the image edge slope. A different scaling law, still with finite LER, holds for the opposite case, even for perfect
image resolution, i.e., infinite image log slope.

The derivation above ignored boundary effects at the top and bottom of the resist. Given that, the dependence
of LER on T can be understood as follows. Increasing T with N fixed increases the average spacing between
released acids and the greater this average distance, the greater the roughness, all else being fixed. A different
dependence on T should be expected when the boundary conditions at the top and bottom of the resist come
into play as is necessary for a thin resist process.

Finally, LER decreases with increasing RPEB since, for a given density of released acids, increasing the blur
increases the smearing effect of the resist which decreases the roughness but this also amounts to a decrease in
resist resolution precisely because of the smearing effect it has on the image as captured by the resist.



The model is fully three dimensional with the resist edge treated as a two dimensional surface with isotropic
roughness. This is consistent with expermental data.31 In the two dimensional approximation where the resist
edge is treated as a one dimensional line, repeating the above derivation yields the same basic dependencies but
without a T in the numerator in Eq.(14) and RPEB occurs in the denominator only to the square rather than
the cubic power. In both the two and three dimensional cases the power spectrum as given in Eq. (15) will have
the same form.

Although Eq. (14) is just a scaling law, and not an exact result, it is worth showing that it predicts
roughly correct values for 3σLER. The image resolution factor iedge/∂⊥iedge depends on the imaging system,
the illumination conditions, the dose level, and the pattern, and can vary over a rather wide range even for
a given NA and wavelength. Here we use the approximation iedge/∂⊥iedge ∼ λ/2πNA. Letting λ = 193nm,
NA = 0.75, T = 200nm, ε = 0.1 so that the resist is 90% transmitting, Eedge ∼ E0/4 with E0 = 20mJ/cm2, and
RPEB = 20nm yields 3σLER ∼ 6nm which is certainly the right order of magnitude. For EUV with λ ' 13nm
and NA = 0.25 the image resolution factor iedge/∂⊥iedge is no longer valid, as discussed above. Using Eq.
(12), instead of Eq. (11) it is replaced in Eq. (14) by iedgeRPEB with the square root factor remaining the
same. Ignoring flare and taking ε = 0.5, Eedge ∼ E0/4 with E0 = 4mJ/cm2, RPEB = 10nm to allow for the
required increase in resolution at EUV feature sizes, and T = 150nm gives 3σLER ∼ 3nm. Again, these numerical
estimates should not be taken to be accurate predictions or limitations of any technology. They are only meant
to indicate that the scaling law Eq. (14), and it’s high resolution version as applied to EUV, are predicting at
least the correct order of magnitude of the LER. When this is combined with the prediction of the frequency
content from Eq. (15) the implication is that the model is properly capturing the dominant cause of LER.

We end the discussion with a derivation of the impact of LER on device performance following that given by
Croon.34 First, it is gate length variation or roughness, and not resist roughness itself, which is directly relevant
and it must be remembered that the pattern transfer process itself may significantly alter the character of the
roughness.31 [NOTE: terminology switches between device considerations and lithography considerations, device
gate length = lithography line width and device gate width = lithography line length, and so LER maps to
gate length variation or gate length roughness when considering device performance.] Here we assume that all
the intervening processes between resist development and the final physical device can be represented as factors
multiplying the LER and its coherence length. That is, we assume that the gate length roughness σGLR ∝ σLER
and the coherence length of the gate length roughness, ξ ∝ RPEB. This is obviously an oversimplification since
factors other that LER contribute to σGLR, such as etch parameters as discussed by Goldfarb, et. al.31 In any
case, the gate length roughness can be characterized by particular values of σGLR and ξ and we can evaluate
their consequences, independent of their origin. Let x label position along the width ( = lithographers length)
of a gate of total width W and let L (x) be the gate length ( = lithographers width) at position x. Now consider
some relevant device parameter such as a current I which, neglecting short channel effects can be written as

I =

Z W

0

J (L (x)) dx =

Z W

0

J
¡
L̄+ δL (x)

¢
dx = J

¡
L̄
¢
W +

∂J
¡
L̄
¢

∂L̄

Z W

0

δL (x) dx+ · · ·

We have expanded to first order in the fluctuation δL (x) of L about its average value L̄ and J (L) is the current
density for a channel of length L. We take δL (x) to have a statistical average of zero, i.e., hδL (x)i = 0 so that
hIi = J ¡L̄¢W . The fluctuation in I, σI , follows from

σ2I =
D
(I − hIi)2

E
=

Ã
∂J
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¢

∂L̄

!2 Z W

0

Z W

0
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Ã
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¢
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!2
σ2GLR2ξW

where we have used hδL (x) δL (x0)i = σ2GLRC (x− x0) with C having an autocorrelation length of ξ satisfying
W >> ξ. This leads to the relative fluctuation in I of the form

σI
hIi
∼= ∂

¡
ln
¡
J
¡
L̄
¢¢¢

∂L̄

Ã
σGLRp
W/2ξ

!
This result implies that gate length roughness including any contribution coming from resist LER is deweighted
by the squareroot of the ratio of the gate width ( = lithographers length) to the autocorrelation length of the



roughness. In particular it implies that when W >> ξ the impact of roughness on device performance should be
minimal. The above derivation stopped at first order in δL. It is straightforward to carry this to higher order
and derive the quadratic, cubic, etc., dependence of σI/ hIi on σGLR if desired. For a more detailed discussion
and evaluation of the impact of LER on device performance see Oldiges, et. al.35 and also36,37 .

6. SUMMARY

The fact that the functional form of the power spectrum given in Eq (15) has the same shape as the measured
frequency content for essentially all experimental cases and that the area under this shape accounts for almost
all the contribution to σ2LER implies that the model presented here describes the dominant contribution to LER.
Given that and rewriting Eq (14) heuristically as

σ2LER × dose× blur ' constant (16)

we see that it appears to be extremely difficult, if not impossible, for a resist to have, simultaneously, low LER,
low dose and high resolution, i.e., low blur, such as is required by EUV. This balance between the different
factors is shown schematically in the right graph in Figure 6. It might be argued that the solution is to lower
the value of the constant and certainly it can be varied6 but there appears to be an almost purely geometric
limitation to how low its value can be, at least in any standard chemically amplified resist. To understand this,
consider the following. At low dose the acids are far apart and the volume in between them needs to be filled in
to a sufficient deprotection density by the PEB in order for the resist to develop and this implies a large blur.
On the other hand, a small blur requires the acids to be sufficiently close together for them to combine and add
up to the required deprotection level. It should be noted that the term “low” as used as used here is relative and
specific values have to be compared to detailed specifications for any particular case. Finally the model shows
that even in the limit of high resolution, LER remains finite while ceasing to have a strong dependence on image
slope.

7. APPENDIX

The Hinsberg-Houle chemical kinetics model and associated code8 accounts for four basic chemical processes plus
a coarse grained acid diffusion. Let [P ] represent protected polymer, [D] represent deprotected polymer and [A]
represent acid. The processes are: (1) Acid catalyzed deprotection: [P ] + [A]→ [D] + [A] . (2) Local hopping of
the acid from a protected site to a deprotected site and vice versa: ([D] + [A]) + [P ] *) [D] + ([P ] + [A]) . The
rates for the forward and reverse processes are different and represent an environment dependent random walk
on the atomic scale which is equivalent to an environment dependent local diffusion of the acid. Properly coarse
grained this process should merge into the standard diffusion equation and I will treat it as such. (3) Thermally
activated deprotection: [P ]→ [D] . (4) “Autocatalysis”: [P ]+2 [D]→ 3 [D] . In this case the deprotected polymer
acts to deprotect more polymer. (5) Acid diffusion on the nm and greater length scale with diffusion dependent
on the local environment, i.e., the diffusion constant depends on the local density of protected and deprotected
polymer.

These processes can be represented as

∂tρP (~r, t) = −kAρA (~r, t) ρP (~r, t)− kTρP (~r, t)− kDρD (~r, t)2 ρP (~r, t)
∂tρA (~r, t) = ~∂ ·

³
D (ρP , ρD)

~∂ρA (~r, t)
´

Here ρA,ρP,ρD are the densities of acid, protected and deprotected polymer respectively and ∂t = ∂/∂t with
~∂ = (∂x, ∂y, ∂z) = gradient.

The densities are assumed to be defined on a coarse grained scale on the order of a cubic nm or so. The
various k coefficients are the rate constants for each step. The three terms in the first equation represent steps
1,3,4 respectively. The second equation is the diffusion equation with D (ρP , ρD) the acid diffusion constant. We
can normalize things (neglecting resist shrinkage) by writing ρP + ρD = 1 in which case D (ρP , ρD) → D (ρP ) .
(Actually we should write ρP + ρD = ρ̄ where ρ̄ is the real density of crosslinks, but if we redefine ρP and ρD by



dividing by ρ̄ we get the normalization used above. Note that this rescaling does not affect the linear terms in
the first equation but it does alter the scaling of the nonlinear term.) Under the assumption that for the cases of
interest the density of deprotected polymer stays relatively small we can approximate D (ρP ) ' D = constant.
The diffusion equation is linear in ρA. With D depending on ρP or equivalently ρD, substituting the solution of
the diffusion equation into the first equation will yield a nonlinear first term. But, if D is taken to be constant
then both the first and second term in the first equation are explicitly linear. In this case the equation with
just these two terms is solvable analytically and this is the assumption that we will make here. The last term
in the first equation is explicitly nonlinear. If only this term was present on the right hand side then again this
nonlinear equation would be analytically solvable. But with all three terms present a complete analytic solution
is apparently not possible. Base loading effects are not included here as they make the equations explicitly
nonlinear as well.

NOTE: The first equation is kinetic only, i.e., it has no space derivatives and so, with the initial condition
that ρP (~r, t = 0) = constant, all the position dependence of ρD and ρP enters via the position dependence of
ρA. This is an important point. It indicates that it is the solution to the diffusion equation which contains the
image pattern information and that ρP and ρD, although they may “evolve” or propagate this dependence via
their kinetics, they inherit the position information from ρA and cannot generate any on their own.

With D = constant the solution to the diffusion equation can be written as

ρA (x, t) = e
tD~∂2ρA (x, 0)

This rather arcane way of writing the solution is particularly convenient since if ρA (~r, 0) is expressed as a
superposition of basis functions satisfying particular boundary conditions then ρA (~r, t) will also satisfy the same
boundary conditions. Hence boundary conditions can easily be incorporated into the solution.

Consider the Greens function form of the solution in one dimension, i.e., ~r → x. Take ρA (x, 0) = Cδ (x) =
C
R
dβ
2π e

iβx which is the appropriate superposition for the infinite space −∞ ≤ x ≤ +∞ and C is a constant
which normalizes the initial acid density to the desired value. Substituting this above yields

ρ1DA (x, t) = C

Z
etD∂

2
xeiβx

dβ

2π
= C

Z
e−tDβ

2+iβx dβ

2π
=

C√
4πDt

e−x
2/4Dt

which is the standard result.

Substituting the 1D solution for the diffusion equation into the first equation and ignoring the third (nonlin-
ear) term yields

ρ1DP (x, t) = Exp

"
−kAC

Z t

0

e−x
2/4Dt

√
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dt− kT t
#

The integral in the exponent isZ t
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erf
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and so

ρ1DD (x, t) = 1− ρ1DP (x, t) = 1− Exp
"
−kAC

Ãr
t

πD
e−x

2/4Dt +
x

2D

³
erf
³
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´
− 1
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− kT t

#

The thermal term is small and we shall ignore it from here on. Using the following values for the parameters:
D = 7.8nm2/ sec, t = 120 sec and kAC = 0.2 yields the result for ρD shown in Figure 5. This matches closely
the result presented in Hinsberg et. al.24 Essentially the same formula for ρD was presented recently in

38 .
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Figure 7. One dimensional PEB deprotection blur using the formula and values given in the text. The result matches
closely the data presented in Hinsberg et. al.24 The horizontal scale is in nm and the vertical scale indicated deprotection
density.

In three dimensions we have

ρD (~x, t) = 1− exp
"
−kAC

Z t

0

Z
e−tD~β

2

ei
~β·~x d

3β

(2π)3
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where the last line is valid for kAC << 1.
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