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Abstract:  Localizing a fluorescent particle by scanning a focusedrlase
beam in its vicinity and analyzing the detected photon strgmovides
real-time information for a modern class of feedback cdragstems for
particle tracking and trapping. We show for the full rangestaindard merit
functions based on the Fisher information matrix (1) thatdptimal path
coincides with the positions of maximum slope of the squaie of the
beam intensity rather than with the intensity itself, (2attthis condition
matches that derived from the theory describing the optidesdign of
experiments and (3) that in one dimension it is equivalenh&ximizing
the signal to noise ratio. The optimal path for a Gaussiamb&zanned in
two or three dimensions is presented along with the @raReo bound,
which gives the ultimate localization accuracy that can bkieved by
analyzing the detected photon stream. In two dimensionsoftanum
path is independent of the chosen merit function but thisoisthe case
in three dimensions. Also, we show that whereas the optimath for a
Gaussian beam in two dimensions can be chosen to be consiritioannot
be continuous in three dimensions.
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1.

Introduction

We address the general problem of determining the posifienfloorescent particle by scan-
ning a focused laser beam in its vicinity (see Fig. 1 ) andditg, on a single-pixel (i.e. non-
imaging) detector such as a single-photon counter, theeheent photons generated by the
particle. This method provides a modern, real-time altitreado image-based single-particle



localization in optical microscopy [1-3] - which has beerdaly applied for studying col-
loidal and biophysical systems [4—7] and achieving nanerrgtale “super-resolution” single-
molecule images [8] - and is critical to a new class of measerd technique [9-11] wherein a
single fluorescent particle is located in real time whileedfgack controller tracks or traps the
particle to maintain its position in the observation voluai@ microscope. Each experimental
implementation uses a different combination of laser sitenar multiple detector placement,
sample scanning, and localization algorithm to accomligdal-time position measurementin
two [12—18] or three [19-25] dimensions. While the refereheeperimental implementations
have each been used successfudptimal strategies have been identified only for restricted
cases of the laser scan pattern or estimation algorithnmernmaussian noise approximation
the optimal circular scan path for two-dimensional locatign was found in Ref. [26,27]; under
a Gaussian noise approximation and for a particular estimahe fluoroBancroft algorithm
- an optimal three-dimensional laser scan path was foundgdj o complex two-dimensional
scan geometry was studied in Ref. [29] for the case of a pathat cannot be localized within
the “linear” estimator range of the focused beam. To dateglver, neither a unified, global op-
timality strategy has not been identified nor have the furetaal limits to localization accuracy
been established. We solve this problem here. We show thetddull range of standard scalar
merit functions that can be defined using the Fisher infolonanhatrix the optimum trajectory
is consistent with maintaining the particle at the posgiohmaximum slope of the square root
of the intensity rather than at the maximum slope of the itgntself but that the optimum
time spent at these positions does depend on the partidudézecof merit function. We also
discuss how this is related to maximizing the signal to ndtee Gaussian beams we show that
these results exactly match those that can be derived frerthdory of the optimal design of
experiments. Based on these results we introduce a singpitnég can be applied to determine
the degree of optimality of any experimental design withheatatical rigor. This test allows
a user to ascertain quickly whether a particular laser sedim (n two or three dimensions)
provides maximum information about a particle’s positiond particular focused-beam geom-
etry. These results hold under the assumption that thecfgaisi effectively stationary during
the scan period which does not necessarily suffice for thatiin studied in Ref. [29], where
the beam is scanned over a relatively large range to accoatmadvery fast moving particle.
A more general and difficult problem, not addressed here @evise a strategy for locating
a particle that explores a significant fraction of the exmtageometryduring the scan time.
Under this quasi-stationary assumption we solve the opsican path problem completely.
Specifically we find that for a Gaussian beam in two dimensi@) the fundamental
bounds on the localization accuracy are

W

2 2 0
L.
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where gy is the standard deviation in position measured al&rg {X,y,z}, wo is the fo-
cused Gaussian beam waist [30] aNgh the (average) number of photons collected during
the scan time. Note that Eq. 1 is identical to the standargéiemsed result when a Gaussian
point-spread function is assumed [1, 2], demonstratingetigvalent information content of
a diffraction-limited image and the photon stream from aprapriately scanned diffraction-
limited excitation beam.

For a Gaussian beam in three dimensions (3D) we find that ferpamticular choice of
optimization function

w2 w2
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Fig. 1. Schematic diagram of a laser-scanning particle localization expetih Gaussian
beam is scanned along a time-dependent (continuous or discrete) pgthnd a modu-
lated stream of photons is detected. The optimal design problem is to detemmich scan
path encodes maximal information about a particles location in the detdubéahpstream.

whereA is is the wavelength. There is no equivalent result for imaaged three-dimensional
localization corresponding to Eg. 2, though competing ieabgsed methods [31-34] can (and
should) be evaluated and compared to the bound given abaikdnlyithe following Gaussian
approximation to the focused Airy diffraction pattemy ~ 0.4A /NA, where NA= sin[Bnax
with Bnhax being the maximum angle the light illuminating the sampléeasawith respect to the
z axis, the three-dimensional localization accuracy become

A? 031 0.28
The remainder of the paper is devoted to a derivation andisiisan of these results. We specify
the problem in terms of the Fisher information matrix, givebgl optimality conditions, and
identify scan paths for the familiar Gaussian beam profilesio- and three-dimensions. In
Appendix A we justify the global optimality condition and Appendix B we derive the lin-
earized maximum likelihood estimator based on the detgdtetbn stream and foreknowledge
of the beam shape (gradients and curvatures of the intgmsifife), which can be applied in
experimental hardware for real-time localization.

2. Theory of Optimal Design of Experments

Consider a laser beam with a position dependent intensitrifolition 1(r) wherer =
(r1,r2,r3) = (x,y,2). When the beam intensity is shifted to positignand a fluorescent par-
ticle, is located at position, the intensity at the particle position lisr —r) and so the (av-
erage) rate at which fluorescent photons are generateden owé|(r —r) where¢ is the
fluorescence cross-section (area) of the particle. Leftiag &1l with | in units of (incident
photons)/(areatime) it follows thatl™ has units of (fluorescent photons)/time. (Note: Although
it is convenient to think of _ as the position of peak intensity or as the centroid of thel#ais

is not necessary. The solution to the optimization probleliramtomatically take whatever po-
sition definition is used into account.) Now suppose the bisaganned over a time-dependent
pathr(t) for a time periodr. Our task is to determine which scan path encodes the most in-



formation about the fluorescent particles positioim the detected fluorescent photon arrival
times; that is, which path enables the best unbiased estiofia?

Fluorescently generated photons obey a Poisson distiiute., over an extremely short
time intervalAt the probability for detecting photons when the particle is at positioand the
laser beam is at position (t) is given by (I (r —ry_ (t))At)" /nlexp[—T (r —ry (t))At]. Hence
over a finite timer = NAt the statistical description of the measurement processfigatl
by the the probabilityp(ts, ...,tk |r) of observing the set dk unordered photon arrival times
{t1,...,tx } in the intervalt € [0, T) with

K T
Bt ... t|r) = Kllk|'| rr _rL(tk))exp[_/o atr(r —rL(t))} 4)
" k=1

where the product ovéris understood to be unity fa¢ = 0 and we have replac@[\‘zlml'(r —
rL(nAt)) with [ dtl(r —rg (t)). The information about the positiarof a particle inD dimen-
sions contained in a scan of the laser positioft) is quantified by the associatédx D Fisher
information matrix [35],F which for p(ty....,t|r) given above hag, k elements given by

[F]jk =Fjk= éo/ordtl...dt}( p(ty,...,t]|r) (0] In[p(ty,....tx[¥)]) (In[p(t,. .., tk|r)])
: (5)

whered; = d/dr;. The Crangr-Rao bound is the statement that the best unbiased estiofat
r has a covariance matrix given My= F~1 [35]. Thus, we seek the scan pajht) that max-
imizesF and correspondingly minimizes the covarianteFor one-dimensional estimation,
this is a straightforward scalar maximization task, butighler dimensions we must choose a
scalar quantity that characterizes the “siggF] of the matrixF. (Below we show that for the
1D case, maximizing maximizes the signal to noise ratio. In higher dimensioeselis more
than one signal and choosingF| is equivalent to choosing what function of these signals is
to be maximized relative to the noise ) Two common choicegj@ntifying the size oF are
the determinangy [F] = det[F]*/% and the trace of its inversg 1 [F] = dTr[F 1] % which in
turn bound the determinant and trace of the covariance x¥dtrirhe trace of the covariance
matrix, and hence._1 [F], is particularly important for our case since it is propontl to the
localization accuracye(g. for D = 3, Tr[V] = 07 4 o7 + 07). The functionsg and¢_; are
only two examples of the more general matrix informationction ¢, used in Ref. [36], and
defined for allp # 0 by
1/p
) (6)

1 \"" (1
Fl=(= == F-...
@ [F] <dTr[F ]) OITr F F. F
ptimes

where ™" indicates matrix multiplication. These provide a sensitrieasure of the information
content for allp < 1 [36]. It is important to note that, except in special caddsgh symmetry,
the optimal scan path maximizirg [F] depends on the choice pfas we will show explicitly
below for a Gaussian beam in three dimensions.

For any pair of fluorophore coordinategsandx, a straightforward computation &fusing
the above definition yields

Fio = [ drm (AT —r ) @G —r )

4/0Tdt (‘91\/F(r—rL(t))) (0k\/r(r—rL(t))) )




Using/T (r) = /&I (r) = /&a(r) with a(r) the modulus of the field amplitude we can define

g=20yT(r—rL(t)T=2/&t Da(r—r.(t))
wherell is the gradient, i.e[[j = ¢ . Treatingg as a column vector and indicating the transpose

with a superscript T
l T
F= —/ dtg-g".
TJo

If the beam is moved il discrete steps, dwelling at each posit'rcﬁ?f for a timeAt,, we can
define a vectogy for each laser position and write the Fisher informationrmaimply a

N
F = Yt , =0T
n=1

48 % At Da(r —r,(_”))) ~Da(r —rl(_r”))T (8)
n=1

This is the same Fisher information matrix obtained in asitad linear regression model where
the unknown particle position is projected onto a set of regression vectgyswith corre-
sponding weights,, with observations corrupted by zero-mean measuremeaoitseof unit
magnitude. In this representation, tleagth of a regression vector determines firecision of
a measurement along that direction. The optimal experiahel@sign problem is to choose a
set ofN vectorsg, and corresponding weightg - or equivalently, a set dfl laser positions(L”)
and dwell timed\t, - that maximizes the information matrixrelative to the criteriorg, [F].

The theory of optimal experimental design provides a venyegal and extensive analysis
of the solution to this type of problem [36]. For thgoptimality criteria defined above an
experimental design with associated Fisher métixs @y-optimal if and only if

g"-FPl.g<Tr[FP )

for all possible regression vectogsin this case all possible scan paths, with equality being
achieved only for vectorg that are part of an optimal scan path. (For a Gaussian beal in 3
this is shown explicitly below in Section 3.2, see in paréecu-ig 2. We provide a justification
for this form of the optimality condition in Appendix A.)

Substituting forg, we can also write that a laser scan patlpjsoptimal for any finitep < 1
if and only if

(Ca(-r)T-F2 L (Ca(-1) < g TrIF? (10)

for all r; again, equality is achieved only fowvalues that lie on an optimal scan path. Any laser
scan path can be tested for optimality by computing the m&dion matrixF and testing for
optimality using this criterion. Unfortunately, althoughs reasonably easy to apply, it is not
at all obvious how this process yields an optimum scan paihin®rder to gain insight into
the solution we will first solve the optimization problem thetmore conventional approach of
using the calculus of variations. This will not only spedifye optimum scan path in a obvious
way, it will also provide significant insight into the solati including indicating how to alter
the intensity distributiori” to improve the tracking accuracy. We will then show that foe t
Gaussian beam this yields precisely same result that iglifasimg Eq. 10



3. Solution via the Calculus of Variations

F is a functional of the laser scan trajectory(t) and so the optimum trajectory with respect to
@ [F] defined in Eq 6 is the one for which the changepiiF| vanishes to first order ithr_ (t)
whenr (t) — rp (t) + dry (t). Of course this condition only gives an extremumgpfF| and
we must separately determine that a given solution maxswigg-| . Carrying out the variation
and setting the result to zero yields

1/p-1
0= (;Tr[F”]> [prl] ki (G@(r—ri(t))) (ddjalr —rL(t))) (11)
with repeated indices,, k... summed over the appropriate range and we have used that fact
thatF is symmetric.
In 1 dimension (1D} is a non-negative scalar, i.€&,= F and assuming it does not vanish
Eqg. 11 reduces to
0= (da(x—x_(1))) (da(x—x_(t)))

for all p which shows thatg, [F] is maximized at positiong_ (t) whered,?a(x—x_(t)) = 0

with |dxa(x—x_ (t))] # 0. But d,2a(x— x_ (t)) = 0 is simply the condition thaBa (x —x_(t))|

is, neglecting inflection points, a maximum. Interestingtys does not correspond to the
maximum slope of the intensity itself. Thus we can improve kbcalization accuracy by
maximizing the absolute slope beam amplitude and if theeenaultiple positions where
d,2a(x—x_(t)) = 0 then the global optimum is achieved by using the one withlangest
value of|dka(x—x__ (t))|. Under the assumption that during the scan time the partaséipn

x is essentially constant it follows that (t) can also be held constant. For a Gaussian beam
in 1D [30], a(x) = agexp[—x2/w¢| and we have),2a(x—x_) = 0 for x_ = x+wp/v/2 with

both solutions having the same value|dfal. ¢, [F| is therefore a maximum fdf = F, =
8Etal/ (ewg) = 8Npn/ (ewg) .whereNy, = & Ta/eis the mean number of photons collected
during the scan. Obviouslia(x)| needs to maintain a large value over the range of uncer-
tainty in the particle positiol\x, i.e., |da(x— eAx—x_ )| should be approximately constant,
and large, fo—1< e < +1.

Next consider the 1D case from the point of view of the intgngither than the amplitude,
i.e., from the point of view of the first line of Eq. 7. In thisrfa F is maximized at positions
where the slope of the intensiigl, is a maximum with the intensityitself being a minimum.

At first requiringl to be a minimum seems counterintuitive. But the signal aunghdi is on the
order ofdyl x Ax while the absolute noise level is proportionahtd and so the signal to noise
ratio for a givenAx is maximized at positions whetéd,l)| /+/1 or equivalently(dl)? /1 is a
maximum. Hence maximizing in 1D is equivalent to maximizing the signal to noise ratio.

This 1D solution generalizes directly to 2D and 3D. Eq 11 casdtisfied by choosing posi-
tions that have d;a(r) = 0 for alli andj. Again the beam can be held stationary at a sufficient
number of these positions during the scan time although &memus trajectory which main-
tains these conditions may be easier to implement mecHpracal/or optically. The condition
ddja(r) =0 fori = j is exactly the same as the conditidha(x) = 0 in 1D. Fori # j this
condition effectively amounts to having the gradientsi(f) at the chosen positions be mutu-
ally orthogonal But, as opposed to 1D where the entire measemt timer can be spent with
the beam locked at one position, in 2D and 3D it is not immedijatlear how to divide up the

time among the different positions. To be specific let thetmrs which maximizegp, [F] be
rﬁs), with sranging from 1 toD whereD is the number of dimensions and assume fhat
each point separately aligns with one of the coordinate sa¢kat]a (r — rl(_s>) points purely



in therg direction, i.e.[Ja (r — r(Ll)) points purely in thex direction, and so on, then

1D 2p 1/p
@ [F] = <D > AtP dsa(r —r,(_s>>‘ > (12)
s=1

with the constraint thay 2 ; Ats = 7. Invoking the constraint by settinfp = 7 — 32! Ats the
dwell timesAt,, at each position can be chosen by solving

Ip[Fl _
7 (0t =0fors=1toD-1

Note that if the values gbsa (r — r(l_s)) are the same at all the laser positions then this directly
yields that theAts are equal ta /D independent of the value @f
We now apply this solution technique in 3D to a Gaussian beaimhas a field amplitude
given by [30]
2 x4y

a(x,y,z) = mem[_v\% (HZZ/Zéﬂ

wherezg = nwoz//\ is the Rayleigh range) is the wavelength andg = /Ig. Assume the
particle positionr is approximately zero on the scale of the width of the Gausdiden the
positions of center of the Gaussian beam that have the maxishape in each of the,y and

z directions at the origin are” = (jzwo/\@, 0, O), r? = (0, +Wo/V/2, O) .as before and
r<L3) = (O, 0, izR/\/i) . For 2D localization the symmetry of the Gaussian inxp@lane Eqg.
12 yields dwell times at(Ll) = (iwo/ﬂ, 0, 0) and r(Lz) = (0, +Wo/v/2, O) which are both
equal tot/2.. For localization in all three directions the differencévibeen the slope in the
direction and those in theandy directions causes the dwell times to depengoRorp= —1

Eg. 12 we get

WoT
ANty = AMp=—n————
! 2 2W0+9ZR/\/676
(QZR/\/@)T
My = —~——
2wo + 9zr//6e

whereas folp = 0 we getAt; = Aty = At = 1/3.

In both 2D and 3D thet signs lead to minor ambiguity in the particle position simoen-
inally one cannot tell which side of the beam the particlerisla many cases only the move-
ment of the particle relative to it's starting position igjured and so the absolute position is
not required. But the ambiguity can be lifted in any case §rbp dithering the beam position
slightly in each direction and determining the sign of thargde in signal level.

In the next section we show that the 2D solution for arbitrprgind the 3D solution for
p = —1 derived here are exactly the same as those given by Eq. 10

3.1. Gaussian Beamin Two Dimensions via Optimal Design

In the two-dimensional case, the experimental design prob straightforward. The beam
geometry assuming the particle is maintained at the bearstyai 0) is ' (r) =T (X,y) =

Foexp —%(szryz) withe o = &lp = Eafwith lg the peak intensity in terms of the number
0



of photons/(areac time) [30]. When this beam is offset by a position shiftrof (x,y) from
the origin the regression vectgiis given by

4r
g= Wo r(—r)t.

Scanning at the tw(x,y) positionsr l(_l) = (Wo/v/2,0) andrl(_z) = (0,wp/+/2) as determined in
the previous section for equal timAg, = At, = 7/2, we find the Fisher information matrix

Ffi@1074Nph10
*_W%GO]-_W% 0 1

where the (mean) number of photons collected during a sswle period iNyh = Aty (r1) +
M (rp) =Tot/e=EalT/e.

Note that the same Fisher matrix is achieved for any pair tifogjonal vectors or for a
constant-speed circular scan about the origin so long asdf points lie on the circle with
radiusr = wo,/v/2 [26].

For any other laser focal positian, the optimality inequality Eq. 10 for any finite < 1
becomes

-5 (x%4y?) 2 W
N 2\ W2 < Mo

(X +y%)e " < e

which is satisfied for alt’ = (X',y’). The Crangr-Rao bound on the two-dimensional localiza-
tion accuracy corresponding o= —1 becomesiZ + oyz > Tr(F; 1), so that

w3

2 2
O'X—l-O'yZth

as quoted in Eq. 1. Note that due to the symmetry of the GaussiD this result is indepen-
dent ofp.

3.2. Gaussian Beamin Three Dimensions via Optimal Design
The situation is more complex in three dimensions. Condiderbeam profile given by the

usual expression [30]

Here, ¢ and @_1 optimality arenot achieved by the same scan path, so we focugpon
which bounds the localization accuragy + af + 2. We can determine optimality by testing
a candidate solution. We show that the optimal path is thedeniged above given by

(1) Wo WoT
rY=(+22,0,0 My=— 2 13a
- ( V2 ) ! 2wp + 9zr/V6e (133)
2 Wo > B WoT
r?=(0,+£—.0 M=— > 13b
: < V2 YT 2o+ 9z/v/6e (130)
®_ (0,0, + 2 A (S2/v6e) o 13
n’=1(0,0, +— t3= . c
) ( ﬁ) ° 2wp + 92/ V/6e (13¢)



Fig. 2. Plot off (r) as defined in Eq.14. The scan path given by Egs. (13a-13c) aregro
to be optimal by observing thdt(r) is less than1 for all other values ofwg or z/zr. Note
that because the two optimal points, i.e., the peaks in the graph in Fige 2 parated by

a valley (f < 1) there is no smoothly varying continuous path in 3D that is optimal for
a Gaussian beam. This is in contrast to the 2D case with a Gaussian beaenalitiee
points on the circle = wp/v/2 havef = 1 and hence a continuous path can be used if
desired [26].

The Fisher matrix for this scan path,, is diagonal and is given by

E — Fe 8Mot/e N MoT
o 227 2w+ 9zr/V/6e | 0.6802+0.7610zx
16I o1 /+/6e MoT
Fizz3 = ~

6Wozr + 2723 /v/6e  1.51wozr +1.692%

To prove the optimality of this path, we compute the follogvilest function ¢.f. Egs. 9 and
10 withp = —1]:

TFC2. ) TF2(Da(—
f(r)=gTr[F|;‘*1]g=4£ (e r);rE:;*l(]Da( ), (14)

According to the optimality criteria, the scan path is ogtirif and only if f(r) < 1 for all
r. Writing r = (x,y,2) in convenient dimensionless units where- \/x2+Yy2, r =r/wp and
z=z/zz we find

(15)

8er 2(1+22)2+272%(1—2r 2 +z?)? 272
4(1+2z2)5 1+22
This function is plotted in Fig.2, where it is clearly seen twoexceed the value 1 (this can also

be shown analytically). Thus, the proposed scan path {soptimal and therefore the three-
dimensional localization is always limited by the CianiRao bound, taking here the form

o +oy+o7>Tr[F .

Note that because the two optimal points, i.e., the peakisdrgtaph in Fig. 2, are separated
by a valley f < 1) there is no smoothly varying continuous path in 3D that ismoak for a
Gaussian beam. This is in contrast to the 2D case with a Gaubsiam where all the points



on the circler = wp/+/2 havef = 1 and hence a continuous path can be used if dedRé#
The fact that no smoothly varying continuous path is poesii3D has obvious implications
with respect to the practical implementation of these testlitue optimality requires the beam
to hop instantaneously between- 0 with r = wp/+/2 andr = 0 with z= zz/+/2. In a strict
sense this is not possible physically but obviously anyesyistith a hopping time which is tiny
fraction of T will for all practical purposes be optimal.

Computing the number of photons collected along the scdnghaing a single period from
Nph = S5_; [ (r)Aty, we can rewrite the best possible three-dimensional lpetitin accuracy,
achieved for the optimal scan path given by the weightedisolas

1+\/§(\/é+2\3@>vz\2+imz:2%].

Plugging in the standard expressinfi= nw%/)\ [30], we recover Eq. 2, proving the initial
claim.

WA
2, 2, 2 o
02+02+02> 2
X T T = N

4. Conclusions

We have used the calculus of variations to derive the optirecen path for tracking and local-
izing a fluorescent particle and have shown that for Gausgams in two and three dimensions
the calculus of variations result matches the solutiorvedrfrom the optimal design of exper-
iments. In one dimension this condition corresponds simpiyaximizing the signal to noise
ratio. In higher dimensions there are multiple signalseiesally one for each direction, and de-
pending on how these are combined into a single signal therdiferent optimization criteria
which is equivalent to having to choose the valugooh the merit functiong, [F]. These re-
sults provide a simple, testable optimality criterion téedlmine whether a candidate laser scan
path encodes maximal information about a fluorescent pestposition in the detected photon
stream. We presented optimal scan paths for two- and thireendional Gaussian beams and
used these to derive the best possible localization adestaguoted in the introduction. We
have shown that the optimal path for 2D localization usinggai$dian beam can be continuous
if desired, but the optimal path in 3D for a Gaussian cannatdminuous. These results can be
applied to other experimental geometries, including thvasere multiple detectors - rather than
multiple beam positions - are used for real-time local@atiFuture work should focus on re-
laxing the assumption that the particle remains effegtigéhtionary during each scan cycle so
as to extend optimality results to cases where the partict@iving under a particular dynamic
model (for example, free diffusion or diffusion plus flow)where feedback control may not
be sufficiently tight that the particle is well-localizedatve to the beam size. Also, it would
be worthwhile to determine if there are physically reallzaibtensity distributions which do
allow for the optimal path to be continuous as this might &iel practical implementation of
these results.

5. Appendix A: Justification of the Global Optimality Criter ion

The rigorous proof of the optimality condition Eq. 9 is ratkemplex and will not be presented
here. Instead we will present a justification for it. By defom F. is ¢, optimal relative to all
otherF if and only if

@ [F] < ¢ [F.]
Substituting the definition ofy, from Eqg. 6 into the above condition, raising both sides to the
powerp and cancelling factors of/H gives

Tr[FP] < Tr[FE]



Writing Tr[FP] = (Ff’l)__ Flji
ij
into the definition of they, and rearranging gives

using[F*}ji =Fji= zﬁzlg*njg*ni after absorbing the,

=z

N
Tr [FE} = Qieni [Ff_l}ij Qinj = Z gIn : Ff_l'g*n
1 n=1

n

All F are real and symmetric and so can be diagonalized by a sityti@nsformation. Let the
similarity transformation which diagonalizés be S whose rows are the orthonormal eigen-
vectorsg of F, with i = 1,...,D in D dimensions. The®-F,-S" =1, is diagonal an®' - Sis
the identity matrix. The diagonal elementsfpfyiven by f; are real and positive since

N
vIi-F,.v= > (Viguni)® >0
n=1

for any real nonzero. Writing g., in terms of the eigenvectoes (written as column vectors)

gives
D J—
n i; n

As we have seen above, Ihdimensions we only nedd independent measurements to deter-
mine the particles position, i.e\ = D, and that in the representation whérés diagonal that
these optimum positions are orthogonal to one another whiedins

O«ni = 0+i Onj
Substituting this int&- F,-S"T = f, we find

=2

GniG:nj = 0:i0+j G = f.i G
1

n

with no sum ori.or j which givesg,; = /f.jand

N
Z g;[n'ff_l’g*n = g;l' ‘ff_l'g*
n=1

If we now replaceg, with an arbitraryg and undo the similarity transformation we have by
definition
g"-FPt-g <Tr[FP]

Appendix B: Maximum Likelihood Position Estimation for an Ar bitrary Scan Path

In earlier sections, we derived design criteria for deteing which laser scan path contains the
most information about a particle’s position, when theipbatis near the origin of coordinates.
In general, however, we also require an estimation proeethat can extract the position from
the detected photon stream. This position estimator méisguwrse, include some information
about the beam size, shape, and the scan path. One candidatekimum likelihood estima-
tor, whose performance will be uncertain when the photonberis very small but will tend
towards optimality for large photon numbers (how large cdroe determinea priori and is

a common criticism of maximum likelihood). In this appendie derive a simple linear form
for the maximum likelihood estimator of a fluorescent péetscposition for an arbitrary (2D



or 3D) scan path, under the assumption that the particlgiposiis close to the origin. To do
this, we can expand the time-detection rate function torsécoder inr as

1

Flr—re@) = F=re®)+r7 Orl o+ 5

rTH(D)| T +0(r%) (16)

where H(M)[_, ) is the Hessian matrix of partial derivatives of the laseenmsity function
evaluated at the pointr(t). For any functionf(r), the jk entry of the Hessian matrix is
H(f)]jk = %. Plugging this second-order approximation into the liketid function of

Eq. 4 and setting the gradient with respect to particle mwsit to zero, we find the following
linear equation for thenaximum likelihood estimate ry e of the particle positiom:

Arye +b=0 (17a)

where theD x D matrix A andD x 1 vectorb depend on the laser scan path and the measurement
result{ts,...,t} through

T K
A = = [ HOL gdt+ Y Hlogh] (a7b)
b k=1
T K
b — _/0 00|y &+ S Ollogh)|_,, (17¢)
b k=1

The sums ovek are understood to be 0 wh&h= 0. When the functional form of the terms in
A andb can be precomputed or approximated, a real-time positibmate can be formed by
computingA andb in real time (through the sums ovierand solving the 2- or 3-dimensional
linear system.

As a simple example, consider the two-dimensional Gaussam example of Sect. with
the circular scan path_(t) = ﬂ(cos%"ﬁsin%"‘)? By direct computation, we find

V2
1 0 w
A:-( ) L b= S ) (18)
0 1 22,
so that
0 . K=0
rMLE = K 2 K om ! (19)
\%(&kzlcos’fk,&kélsm’;“‘ ., K>0

Note that the maximum likelihood estimate for this case i@giby phase-sensitive lock-in
detection of the photon streagn[26].



