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Abstract

Block copolymers offer an appealing alternative to current lithographic techniques with re-

gard to fabrication of next generation microprocessors. However, if copolymers are to be useful

on an industrial manufacturing scale, they must meet or exceed lithography specifications for

placement and line edge roughness (LER) of resist features. Here we use a field theoretic ap-

proach, based on the Leibler-Ohta-Kawasaki energy functional, to model the LER of lamellar

microdomain interfaces in a strongly segregated block copolymer system. We consider a melt

with a finite number of microdomains between parallel, template walls and derive formulas

for the interface LER and sidewall angle variation (SAV) as functions of the Flory Huggins

parameter χ , the index of polymerization N , and distance from the template wall. Our pertur-

bative approach yields explicit expressions for the dominant contributions to LER, namely, (i)

an interface tension arising from the repulsive interaction between different monomer species,

and (ii) a stretching energy associated with the deformation of the polymers near an interface.
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Our results suggest that in order to meet the target LER goals at the 15, 11, and 6 nm nodes, χ

must be increased by a factor of at least 5 above currently realized values.

1 Introduction

1.1 Background

Self-assembling block copolymers have received considerable attention in recent years, largely

in the hope that they can augment state-of-the-art manufacturing techniques as microprocessor

features continue to shrink.1–4 In particular, template directed self assembly (TDSA) – the spon-

taneous formation of polymer microdomains between lithographically patterned boundaries – is

being studied as a way to decrease the size of semiconductor features without increasing the res-

olution of current lithography tools (see Figure 1).5–8 A critical task in assessing the usefulness

of block-copolymers is therefore to characterize the fundamental limitations on the roughness of

the patterns that they form; if the roughness cannot be controlled to within specification, devices

fabricated using TDSA will have soft defects,9 sufficient to preclude the use of block copolymers

in many semiconductor manufacturing settings.

Our goal in this paper is to analytically predict the line edge roughness (LER) of block copoly-

mer microdomain interfaces (cf. Figure 1) as a function of the Flory-Huggins parameter χ , the

index of polymerization N , and distance from the template; in the present analysis, we focus on

lamellar systems in the strong segregation regime (SSR). Similar tasks have been pursued by, e.g.

Semenov,10 Detcheverry and de Pablo,11–13 and Bosse,14,15 among others;16 however, to the best

of our knowledge, these treatments either (i) relied heavily on numerical methods and computer

simulations (which we do not use here), or (ii) considered geometries and physical parameters

corresponding to systems in a weak segregation regime. In the context of these studies, our work

is therefore motivated by two main considerations.

First, melts in the SSR are the polymer systems most relevant to a semiconductor manufac-

turing process. In the SSR, different types of monomers mix poorly; microdomain boundaries
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are therefore sharp and well defined, which allows the microdomains to be effectively used as a

template for device features (cf. Figure 1). On the other hand, polymers in the weak segregation

regime exhibit significant mixing of their different monomer components, so that the geometry

of microdomains becomes difficult to resolve. Second, while simulations are an invaluable tool

for exploring the behavior of many complicated polymer systems, there is significant computa-

tional overhead associated with exploring the parameter space available for industrial applications.

While analytic models and results do not always provide the same level of detail as simulations,

they nonetheless yield insight into the physical processes affecting a system over a broad range

system parameters without the computational expense associated with numerical methods. Our

work therefore (i) aims to complement simulations with formulas that predict the values of χ and

N needed to bring the LER within acceptable levels (ii) for systems that are of direct interest to

the semiconductor industry.

Figure 1: [Color online] A simplified cartoon showing how template directed self assembly
(TDSA) can be used to pattern semiconductor devices: (i) a template is etched into a substrate
using conventional lithographic techniques; (ii) block-copolymers are added to the template; (iii)
polymers self organize into microdomains; (iv) by removing one of the polymer components (B
components in this image) one is left with a template that can be used to guide the formation of
straight wires, for example. Note that the roughness of the A-B interfaces will in principle affect
the roughness of the template after etching.

The starting point of our analysis will be the phase field model originally developed by Leibler,

Ohta, and Kawasaki (LOK),17,18 which gives the energy H [φ ] of a polymer melt as a functional

of the relative density φ (defined in Section 1.2) of the monomer species. In their original work,18

Ohta and Kawasaki determined that the lowest energy configuration (for equal molecular weights
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of the two monomer components) was indeed a lamellar phase-separated system, but with zero

LER. Our main tasks will be to (i) determine the fluctuation eigenmodes of the system about that

ground state configuration, and then (ii) construct the total LER as a weighted sum of the roughness

associated with each mode; the weighting function P[φ ] is given by the Bolztmann distribution,19

P[φ ] ∝ e−H [φ ]/kBT , (1)

where kB is the Boltzmann constant and T is the temperature. Interestingly, we will show that our

analysis also predicts the sidewall angle variation (SAV).

Our choice of model is driven in large part by consideration of the features that we wish to

describe. On a microscopic scale, individual polymers exhibit complicated geometries and fold-

ings, which are adequately described by Gaussian chain models, molecular dynamics, and Monte

Carlo simulations,20–22 for example. However, for polymer melts whose domains span tens of

nanometers, the computational expense of using such models becomes insurmountable, owing

simply to the number of particles that must be taken into account. Moreover, at such length scales,

one typically wishes to study mesoscopic features (such as the LER) of the melt as a whole, as

opposed to the structure of individual molecules. Phase field models therefore enter as computa-

tionally tractable alternatives that (i) permit study of quantities relevant at the nanometer length

scale, while (ii) coarse-graining microscopic features that otherwise render computation difficult.

In our present analysis, we use the LOK phase field model since it is analytically tractable, and re-

cent studies suggest that it could be well suited to describe fluctuations in technologically relevant

systems.14,15

A salient feature of the LOK model is that it describes a system of string-like molecules (poly-

mers composed of monomers) that interact with each other in terms of a macroscopic monomer

density that only interacts with a background potential.23 The connected nature of the polymers

contributes a non-local term (which resembles an electrostatic potential) to the energy functional.

As we will show, this non-local term plays an important role in limiting low frequency LER modes;
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the low frequency behavior of our results will be one of the main features distinguishing them from

simpler, capillary wave type models.10,24

We note that while the LOK model is amenable to analytic computation, it is nonetheless

complicated enough that we do not find exact expressions for the LER; rather, we arrive at our

final results through a series of asymptotic approximations that become increasingly accurate as

the product χN increases, i.e. when the system moves further into the SSR. As a secondary

benefit of this approach, the approximations we invoke will reveal the dominant physical processes

that contribute to (or rather, limit) the LER. When possible, we will estimate the error of our

approximations in terms of physical parameters describing the system.

The rest of the paper is organized as follows. In Section 2 we define the elements and key

length scales of our system, review the basic principles of the LOK model, and derive the energy

functional H1 describing fluctuations. In Section 3 we use perturbation theory to approximately

diagonalize the energy functional H1 and identify the fluctuation modes responsible for LER and

SAV. In Section 4 we define and calculate the LER and SAV. In Section 5 we discuss the physics

of LER (Section 5.1), compare our results to experiments (Section 5.2) and other models (Sec-

tion 5.3), and consider our main results in the context of the LER requirements set forth by the

International Technology Roadmap for Semiconductors (ITRS) (Section 5.4). In Section 6, we

briefly summarize our work.

1.2 Notation and Terminology

Here we summarize notation and terminology that will be used throughout the remainder of the

text:

i) a is the Kuhn statistical length, which measures the average distance between two adjacent

monomers. This length is considered to be extremely small relative to the system size.

ii) χ denotes the dimensionless Flory-Huggins parameter, which characterizes the repulsion

between different monomer species. In passing, we note that experimentally, χ = O(1) is con-

sidered to be a large value of the Flory-Huggins parameter;25–28 this fact will become extremely
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important in Section 5.4 when we discuss LER in the context of manufacturing specifications set

forth by the ITRS.

iii) N denotes the index of polymerization, the number of monomers in a single chain.

iv) f is the (normalized) molecular weight of A monomers; (1− f ) is the molecular weight of

B monomers.

v) φ(x) = φA(x)−φB(x) denotes the relative density of A monomers [φA(x)] and B monomers

[φB(x)]. We choose the normalization 0 ≤ φA(x),φA(x)≤ 1, so that −1 ≤ φ ≤ 1. We furthermore

impose the incompressibility condition φA(x)+φB(x) = 1.

vi) Ω is the physical domain of the polymer melt, whose volume will be denoted |Ω|. The

symbol V will denote a unit volume.

vii) Informally, the expression g = O(δ ) means that g is roughly the same size as δ .29

viii) Unless otherwise noted, italicized variables will represent quantities having dimensions,

whereas non-italicized versions of the same variables will be dimensionless. For example, if x

represents a length in some units (e.g. nm), the variable x will be a rescaled, dimensionless version

of x. The scaling of non-italicized variables will always be defined at their first appearance.

ix) The term pitch (which is commonly used in lithography) will be used to refer to the average

period of the polymer domain spacings; see Figure 2, for example.

2 Perspective: System Geometry, Key Parameters, and Descrip-

tion of Fluctuations

The system we wish to describe is a lamellar, diblock copolymer melt in the SSR (cf. Figure 2).

For simplicity, we take the molecular weights of the A and B subchains to be equal (i.e. f = 1/2)

and denote ` as the average width of A (or B) domains, i.e. ` is the so called half-pitch. We consider

lamellae that have aligned themselves with parallel, template walls separated by integer multiples

of the width ` (cf. Figure 2).30 The parameter h denotes the height of the melt, and we assume that

the system is infinite in the y direction.31 Since the system is in the SSR, the boundaries (yellow
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regions in Figure 2) between the A and B domains are small compared to `.

Figure 2: [Color online] Three views of a polymer melt in the lamellar phase. Inset (i) shows a
single block copolymer with A (red) and B (blue) components above two microdomains compris-
ing a full pitch; a boundary (yellow) separates regions of different monomer species. We assume
that the microdomains extend to ±∞ in the y direction. Inset (ii) shows a system with three full
pitches. Boundaries are located at integer values of `. The closeup (gray box) illustrates how the
polymers organize within the microdomains. Inset (iii) shows a top down view of a system with
different types of fluctuating boundaries. The black dotted lines indicate the average positions of
the microdomain boundaries. Boundaries I - III exhibit LER fluctuations corresponding to f1 [cf.
Eq. (11)]; boundaries I and II are out of phase, whereas II and III are in phase. Boundaries IV and
V exhibit (in phase) SAV fluctuations, corresponding to f2 [Eq. (12)].

We describe this system with the Leibler-Ohta-Kawasaki energy functional, an effective (i.e.

derived) field theory that views the melt from a coarse-grained perspective. Individual polymers

are not considered; rather the configuration of the system is represented by φ , the relative density

of A and B polymers, which is a continuous function of position (see Section 1 for definition of

φ ). The energy functional takes the form,18,23

H [φ ] =
kBT χ

V

∫
dV

{
ξ 2

2
(∇φ)2 − φ 2

2
+

φ 4

4
+

ς
2

∫
Ω

dV ′φ(r)g(r, r′)φ(r′)
}
, (2)

ξ 2 :=
a2

3 f (1− f )χ
ς :=

36
f 2(1− f )2a2χN 2 . (3)

The function g(r, r′) is the Green’s function of the Laplacian. We impose periodic boundary condi-

tions on φ and g in the y and z directions, which amounts to the assumption that we study the bulk

behavior of the system in these two dimensions.

At the left and right x boundaries, we set φ = ±1. More specifically φ has the same sign at

both boundaries if the number of micrdomains is odd, but opposite signs for an even number of
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microdomains; the physics is otherwise insensitive to the signs we choose, provided that the above

rules are followed. Physically, these boundary conditions mean that only one monomer species

will be present at any given domain wall. Experimentally this condition can be realized by making

the length of the system in the x direction to be an integer value of `.

We also assume that the normal derivative of g vanishes at the x boundaries, i.e. we impose

Neumann boundary conditions. Physically, this choice is motivated by the observation that fluctu-

ations at the domain boundary will have a higher energy penalty than those in the interior of the

melt; at the domain wall, there are few polymers available to relieve strain caused by a fluctuation.

With this in mind, we note that the Neumann condition describes the physics of the system more

appropriately than a Dirichlet condition, for which g = 0 at the boundary.

Since we model our system using a continuum theory, we anticipate that the interfaces between

A and B domains will be represented by boundary layers (cf. Figure 3), i.e. narrow regions in

which the density φ changes rapidly. In studying interface roughness, therefore, our analysis will

be concerned primarily with fluctuations in the position and width of these boundary layers. For

perspective, we foreshadow that the parameter ξ appearing in Eq. (2) will be proportional to the

the boundary layer thickness and (as we will show in the next paragraph) is small in the sense that

ξ � ` whenever χN � 1, when the system is in the SSR.

Figure 3: [Color online] The mean field density φ0(x) [cf. Eq. (4)] for lamellar microdomains with
a 10 nm half-pitch and an interface thickness ξ = 0.5 nm. Regions where φ0 ≈+1,−1 correspond
to A-rich and B-rich microdomains, respectively. The boundary layer (yellow) separating A and
B-rich domains has a width characterized by ξ � `.

The lowest energy (or mean-field) polymer density φ0 may be found by taking a variational
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derivative of Eq. (2) with respect to φ and setting the resulting first variation equal to zero. This

procedure yields a complicated integro-differential equation for φ0; solutions to this equation were

originally pursued by Ohta and Kawasaki, who determined to a good approximation that,18

φ0 =
N

∑
j=1

(−1) j−1 tanh
[

x− j`√
2ξ

]
, N odd

φ0 = 1−
N

∑
j=1

(−1) j−1 tanh
[

x− j`√
2ξ

]
N even (4)

where N (not to be confused with N , the index of polymerization) is the number of interfaces.32

The form of φ0 given above is essentially a square wave oscillating between ±1; physically, this

solution corresponds to a lamellar phase-separated system with perfectly straight interfaces having

a width 2ξ (cf. Figure 3). The domain spacing ` was originally determined18 by inserting Eq. (4)

into Eq. (2) and minimizing the resulting expression with respect to `. This procedure yields

`= (16
√

2/3ξ )1/3(Rg)
4/3 for a copolymer whose volume fraction and molecular weight are 1/2;

here Rg =
√

N /2 is the radius of gyration.18 The argument of the tanh functions corresponds to

a choice of origin in which the mean field interface locations are at `, 2`, ..., as in Figure 2(ii).

If ψ is some perturbation of the mean field density, then we write φ = φ0 +ψ and expand

Eq. (2) to second order in ψ; doing so yields,

H [φ ] ≈ H [φ0]+H1[ψ]+O(ψ3) (5)

H1[ψ ] :=
kBT χ

V

∫
dV

{
ξ 2

2
(∇ψ)2 − ψ2

2
+

3
2

φ 2
0 ψ2 +

ς
2

∫
dV ′ψ(r)g(r, r′)ψ(r′)

}
, (6)

where H1 is the approximate energy of a fluctuation ψ . We require that ψ satisfy periodic bound-

ary conditions in the y and z directions; on the x boundaries, we set ψ = 0. Since fluctuations

with large energies should occur rarely [via Eq. (1)], the above approximation is justified for small

enough temperatures by noting that the statistics of the system will be dominated by those states

whose energies are near that of the ground state; in essence, we treat |ψ| as a small parameter that

allows for the expansion given by Eq.(6).
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In general, a given state ψ of the system can be represented as a linear combination of fluctu-

ation modes ψ j having energy E j (with j simply indexing the modes). In principle, however, two

arbitrary fluctuation modes ψ j and ψ j′ will almost always be correlated, so that the amplitude of

the ψ j expressed by the system will depend on the amplitude of ψ j′ . Hence our main task is to

diagonalize Eq. (6) in terms of its eigenmodes, which vary independently from one another (i.e.

are uncorrelated). We can then define the LER as a linear combination of the LERs associated with

each of the relevant eigenmodes.

In anticipation of this task, we examine Eq. (6) to gain insight into the types of fluctuations

allowed by our model, especially since we are looking for fluctuations of boundary layers. The

term ξ 2(∇ψ)2 yields a (small) energy penalty for non-constant fluctuations, while the non-local

term multiplying ς promotes oscillations. The pair of terms (1/2)(3φ 2
0 − 1)ψ2 yields an energy

penalty for non-zero fluctuations except in the boundary layers [i.e. when |x−n`| ≤ O(ξ )], where

these terms promote fluctuations. This last observation foreshadows the existence of eigenmodes

localized within the microdomain interfaces, which will be responsible for LER and SAV.

3 Characterizing Interface Fluctuations

In this section, our goal is to diagonalize Eq. (6) and find the eigenmodes corresponding specifically

to interface fluctuations. We begin by non-dimensionalizing space via dV → dṼ = dV/ξ 3 and

r̃ = r/ξ . Equation (6) then becomes

H1[ψ ] :=
kBT χξ 3

V

∫
dṼ

{
1
2
(∇̃ψ)2 − ψ2

2
+

3
2

φ 2
0 ψ2 +

ξ 2ς
2

∫
dṼ ′ψ(r̃)g̃(r̃, r̃′)ψ(r̃′)

}
, (7)

where g̃(r̃, r̃′) is the rescaled, dimensionless Green’s function [note that g(r, r′) has units of inverse

length]. If ς is sufficiently small, then to leading order we may diagonalize Eq. (7) by solving the

eigenvalue problem,

−∇̃2ψ −
[
1+3φ 2

0
]

ψ = E(0)ψ, (8)
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where E(0) is a dimensionless, leading-order energy eigenvalue. We may then use standard per-

turbation techniques to calculate corrections to E(0) and ψ . At the end of our analysis, we will

determine the values of ς for which our perturbation theory is valid.

For a system having a single interface, Eq. (8) can be solved (up to exponentially small corrections5)

if we cast it into the standard form,33

ψ(x,y,z) = ∑
kz

∫ dky

2π
f (x,ky,kz)eikyy+ikzz (9)

0 = ∂xx f +λ 2 f + l(l −1)sech2(x) f , (10)

where λ 2 = 2E(0)−2q2
‖−4 and q2

‖ = k2
y +k2

z is a wave-vector parallel to the mean field interface

profile. The constant l (not to be confused with `) is an integer;34 for the model here, l = 3, which

is determined in the steps leading from Eq. (8) to Eq. (10). The above expressions are written

in terms of the rescaled variables x = x/(
√

2ξ ), y = y/ξ , and z = z/ξ . The wave-vector ky is a

continuous parameter (in units of ξ−1), whereas kz = 2πnξ/h, n = 0,±1,±2, ... may only take

discrete values.35

Equation (10) is in fact the well studied Pöschl-Teller equation used to model diatomic molecules

in quantum mechanics; exact solutions for any l can be expressed in terms of hypergeometric func-

tions.36 When l takes a simple integer value, these solutions reduce to products and sums of hyper-

bolic and trigonometric functions. For l = 3, there are two “bound” state solutions (one even and

one odd), which approach zero away from the interface [for |x| > O(ξ )], and a continuous spec-

trum of “scattering” states that asymptote to trigonometric functions away from an interface.37

Specifically,

f1(x) = sech2(x), E(0) = q2
‖, (11)

f2(x) = sech(x) tanh(x), E(0) = q2
‖+3/2, (12)

fe(x) =
1

1+λ 2

{[
1+λ 2 −3tanh2(x)

]
cos(λx)−3λ tanh(x)sin(λx)

}
, E(0)= q2

‖+2+λ 2/2, (13)

fo(x) =
1

1+λ 2

{[
1+λ 2 −3tanh2(x)

]
sin(λx)+3λ tanh(x)cos(λx)

}
, E(0)= q2

‖+2+λ 2/2, (14)
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where f1 and f2 are the bound states and fo ( fe) are the odd (even) scattering states; the associated

dimensional energies E(0) are given by E(0) = kBT χξ 3E(0)/V . The parameter λ is nonnegative,

λ ≥ 0. Each of these states is normalized so that the amplitude of the fluctuation is equal to one

when x = 0.

Since both f1 and f2 are localized in the boundary layer, we identify these modes as being

responsible for interface fluctuations. In particular, a fluctuation of the form ψ = f1(x)eikyy+ikzz

corresponds to an oscillation of the interface about its mean position without a broadening of the

width of the boundary layer; see Figure 4(iv) and Section 4. On the other hand, a fluctuation

ψ = f2(x)eikyy+ikzz will lead to a variation of the boundary layer (or interface) thickness; see

Figure 4(v-vi). We refer to these two modes as LER and SAV fluctuations, respectively.

The solutions fo and fe remain non-zero over (essentially) the entire length of the system; they

should be relatively high energy states, and consequently improbable. The fo and fe modes are

fluctuations of the composition profile, as opposed to the interface profile.

For a system with N > 1 interfaces, Eq. (10) takes the approximate form,

0 = ∂xxF +λ 2F + l(l −1)F
N

∑
j=1

sech2[x− jL] , (15)

where L = `/(
√

2ξ ); corrections to the above expression are exponentially small. In the limit that

ξ → 0, we observe that Eq. (15) reduces to N copies of Eq. (8) on the domains 0 ≤ x ≤ 3`/2,

3`/2 ≤ x ≤ 5`/2, ... (2N −3)`/2 ≤ x ≤ (2N −1)`/2, (2N −1)`≤ x ≤ (N +1)`. Asymptotically,

we may then solve Eq. (15) separately on each of these domains and paste the solutions together

at the boundaries. This yields the (asymptotic) bound state eigenfunctions,

Fi(x;m) =
N

∑
j=1

Ξ j(m) fi[x− jL], (16)

where i = 1 or 2, and the sets {Ξ j(m)} are phase factors chosen to ensure that we have a complete

basis of states; there are N such sets, and m is an (as of yet unspecified) quantum number. Since f1

and f2 are approximately zero at the points x = 3`/2, 5`/2, ...(2N−1)`/2, any orthonormal basis
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Figure 4: [Color online] The effect of fluctuation modes f1 and f2 on φ0. In inset (i), we plot φ0
for a single interface located at 10 nm with ξ = 0.5 nm. Insets (ii) and (iii) show the functions f1
and f2 localized at the interface. Inset (iv) shows that f1 displaces the interface (i.e. the boundary
layer) away from its mean position. Insets (v) and (vi) show that f2 contracts [(v)] or expands [(vi)]
the mean field interface width. As in the previous figures, red and blue shading indicates regions A
and B monomer microdomains, respectively. Fluctuations of the type f1 determine the LER, while
fluctuations of the type f2 affect the sidewall thickness or SAV.
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{Ξ j(m)} will yield eigenfunctions Fi(x;m) that solve Eq. (15) up to exponential corrections. An

obvious choice is the Kronecker delta function basis, Ξ j = 1 for j = m and zero otherwise, where

1 ≤ m ≤ N; that is

Fi(x;m) = fi(x;m)≡ fi[x−mL]. (17)

This basis is a set of eigenmodes corresponding to the N cases in which only one of the interfaces

fluctuates.

The most natural generalization of fo and fe is

fo(x;λ ) =
1

1+λ 2

{(
1+λ 2 −3φ 2

0
)
cos(λx)−3λφ0 sin(λx)

}
, (18)

fe(x;λ ) =
1

1+λ 2

{(
1+λ 2 −3φ 2

0
)
sin(λx)−3λφ0 cos(λx)

}
, (19)

where we restrict λ to values for which fo(e)(0) = fo(e)(NL) = 0. These solutions solve Eq. (15) up

to exponentially small corrections. Since we are interested solely in fluctuations of the boundary

layer, we will omit the fo and fe modes when writing Eq. (7) in diagonal form. Moreover, it can

be shown that the amplitude of these modes will have little effect on the boundary layer since they

are suppressed by a factor of ξ/` relative to the f2 fluctuations.

From perturbation theory, it is well known that the first order correction to the energy eigen-

values can be written in general as
∫

dV ΨĤΨ, where Ĥ is some perturbing potential, and Ψ is a

(real) eigenfunction of the leading order problem.38 In our case, we find,

E(1)
1 (m,q‖) ≈ G(m`,m`) =

π
hq‖

{
cosh[q‖`N]+ cosh[q‖(`N −2`m)]

sinh(`Nq‖)

}
, (20)

E(1)
2 (m,q‖) ≈ 0, (21)

where E(1)
1 and E(1)

2 are the first order energy corrections for the f1 and f2 states. In calculating
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Eqs. (20) and (21), we approximate f1(x;m)≈
√

2ξ δ (x− `m) and use the definition

g̃(r̃, r̃′) =
∞

∑
m=−∞

∑
kz

∫ dky

2π
eikz(z−z′)+iky(y−y′) cos(πmx/LN)cos(πmx′/LN)

k2
z +k2

y +(πm/LN)2 . (22)

The first order energy correction for f2 modes is approximately zero because this mode is odd

and changes rapidly compared to g. It is possible to continue perturbation theory indefinitely,

computing corrections to the energy eigenfunctions and eigenvalues, but for our present purposes,

Eqs. (20) and (21) suffice to approximate corrections to the LER.39

Considering only the contributions from f1 and f2 fluctuations, a given state of the system is

now characterized by the respective amplitudes |C(m)
1 (q‖)|2 and |C(m)

2 (q‖)|2 of these eigenmodes;

Eq. (7) is consequently written to first order in diagonal form as,

H1 =
kBT hχξ 2
√

18V
∑
n

∫ dky

2π

N

∑
m=1

{
2[q2

‖+G(m`,m`)]|C(m)
1 (q‖)|2 +[q2

‖+3/2]|C(m)
2 (q‖)|2

}
, (23)

where we have (asymptotically) approximated
∫ (m+1/2)`
(m−1/2)` dx f 2

i (x;m) ≈
∫ ∞
−∞ dx f 2

i (x;m). Inserting

Eq. (23) into Eq. (1), gives the probability of a given fluctuation mode.

4 Defining the LER and SAV in a Continuum Setting

In Figure 3 and Figure 4 we show heuristically how the f1 modes give rise to the line edge rough-

ness. It is also possible to show this analytically by deriving Eq. (6) in a way that manifestly yields

f1 modes as LER fluctuations. Specifically, we assume that φ = φ0[x+ ξ ζ (y,z)], where ξ ζ (y,z)

is a sufficiently small fluctuation of the equilibrium interface profile; expanding φ in powers of ξ

gives

φ = φ0[x+ξ ζ (y,z)]≈ φ0(x)+ξ φ ′
0(x)ζ (y,z)+

ξ 2

2
φ ′′

0 (x)ζ (y,z)
2, (24)
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where φ ′
0, φ ′′

0 denote the first and second derivatives of φ0. Substitution of Eq. (24) into Eq. (2)

(with ς = 0) then yields,

H [ζ ]≈ kBT χ
V

∫
dV

{
ξ 2

2

[
( f ′1)

2ζ 2 +
f 2
1
2
(∇‖ζ )2

]
− 1

2
f 2
1 ζ 2 +

3
2

φ 2
0 f 2

1 ζ 2)

}
. (25)

Up to a scaling of the argument of ζ , Eq. (25) is in fact just Eq. (6) with ψ = f1ζ . Comparison

to Eq. (9) reveals that Eq. (25) can be diagonalized if ζ is written as product of Fourier modes in

the y and z directions. Therefore, we may conclude that f1 modes correspond to a shift in position

of the interface, where ξ is the physical amplitude of the actual fluctuation.40 In passing we note

that for arbitrary q‖, the direction of the interface shift will depend on z; however, when the film

thickness h is small enough, the discrete kz modes will be high energy, so that most fluctuations

will be uniform throughout the height of the melt.

Based on the above analysis, we define the LER per Fourier mode q‖ and interface m as

〈ζ 2
m(q‖)〉=

∫
D[ψ]ξ 2|C(m)

1 (q‖)|2P[ψ] =
V

hχ

[
3

2
√

2ξ q2
‖+6ςhG(`m, `m)

]
, (26)

where D[ψ] is a functional measure over ψ and V is a unit volume. We may define the LER of the

mth interface in real space by integrating Eq. (26) with respect to q‖; specifically,

σ2(m) = ∑
n

∫ dky

2π
〈ζ 2

m(q‖)〉= ∑
n

∫ dky

2π
V

hχ

[
3

2
√

2ξ q2
‖+6ςhG(`m, `m)

]
. (27)

Note that when ς = 0, Eq. (27) does not depend on m; since the f1 modes asymptotically satisfy

the homogeneous boundary conditions at x = 0,(N + 1)`, the template can only affect interface

fluctuations through the non-local term. Physically this makes sense; in the strong segregation

regime, we expect polymer fluctuations to depend largely on the local behavior of the (mean-field)

interface.
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Figure 5: [Color online] LER in frequency and real space. Inset (i) shows the amplitude 〈ζ 2
j (q‖)〉

for a system with 7 interfaces, a 10 nm half-pitch, and an interface thickness ξ = 1 nm. Note
that 〈ζ 2

j (q‖)〉 = 〈ζ 2
8− j(q‖)〉. Interfaces closer to the domain boundary in general have a smaller

LER than interfaces in the middle of the domain; the figure shows, however, that only the low
frequency fluctuations differ significantly among interfaces. Inset (ii) shows values of 3σ given
by Eq. (27); at the 11 nm node, industrial specifications require that 3σ ≤ 1.1 nm. Our results
therefore predict that χ must be increased by at least a factor of five above previous limits in
order to bring copolymers within reach of industrial specifications. This figure also shows that the
number of microdomains has a larger impact on LER than the position of an interface relative to
the system boundary.

In a similar manner, we may define the SAV in Fourier space as

〈τ2
m(q‖)〉=

∫
D[ψ ]ξ 2|C(m)

2 (q‖)|2P[ψ] =
V

hχ
3
√

2ξ
ξ 2q2

‖+3/2
. (28)

Similarly, in real space,

〈τ2
m〉= ∑

n

∫ dky

2π
〈τ2

m(q‖)〉= ∑
n

∫ dky

2π
V

hχ

[
3
√

2ξ
ξ 2q2

‖+3/2

]
(29)

We note that Eqs. (27) and (29) are log divergent if we allow n and ky to go to infinity. Follow-

ing Semenov,10 we define a cutoff frequency such that 0 ≤ q‖ ≤ 2/ξ , which renders the integral

finite and bounded; this cutoff occurs because the mean field theory breaks down for fluctuation

wavelengths that are the same order of magnitude as the interface thickness.

17



5 Discussion

Our goals in this section are twofold. In Section 5.1, we explain the physics of LER on the basis of

Eqs. (26) and (27); in the process, we discuss key approximations and limitations of our approach.

In Sections 5.2 and 5.3 we compare our analysis to experimental results and other models of

LER. In Section 5.4 we consider the implications of Eq. (27) in the context of manufacturing

specifications set forth by the ITRS.

5.1 Physics of the LER from a Mean-Field Perspective

Equation (26) can be viewed as a consequence of the equipartition of energy law, which states that

for a system in thermal equilibrium, the amplitude of a given eigenmode is inversely proportional

to the energy of that mode. In essence, the LER is limited by the energy cost of deforming the

interface. From that perspective, we may view the two terms in the denominator of Eq. (26) as

accounting for different physical processes that add to this total cost.

The first of these terms, χhξ q2
‖, is an interface tension arising from the repulsive interaction

between A and B monomers. This is seen by appropriately factoring the product, since, (i) ξ h is the

area scale associated with a x–z cross section of the interface, while (ii) for mode q‖, the average

increase in length of the interface is proportional to q2
‖ (under a small fluctuation approximation).

Therefore, a mode q‖ will increase the number of repulsive A-B crossings (which occur in the

interface region) by a factor of hξ q2
‖ (in a mean-field sense), with the additional factor of χ in

Eq. (26) accounting for the energy cost of these crossings.

The second process described by χςG(m`,m`)∼N −2 depends on the radius of gyration Rg ∼

N 1/2, but not χ; we conclude that this product accounts for the energy penalty of stretching or

compressing the polymers in the vicinity of a fluctuating interface. This interpretation is consistent

with Ohta and Kawasaki’s original reason for including the non-local term ςg(r, r′) in Eq. (2),

namely, to account for correlations arising from the connected nature of the polymers. The fact

that only the diagonal elements of G appear in Eq. (26) indicates that the first order response of the
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system is determined only by local re-ordering of the polymers near an interface. Continuing to

higher orders in perturbation theory will in principle yield corrections proportional to G(m`,m′`),

i.e. energy costs associated with correlated stretching of polymers at different interfaces.

We stress that while this mean-field model provides simple physical pictures of and analytic

expressions for the LER, caution should be exercised when considering systems whose half-pitch

is of the order of a few nanometers. At such length scales, close examination of the parameters

entering the model reveals that we push it to the limits of its validity. Notably, for a physical system

in which ξ = 1 nm and `= 10 nm, we find that a2 = 3χξ 2/4, which is O(1) nm2 for χ = 1. Since

we expect that the Kuhn length is the smallest meaningful length scale in our model, it is unclear

that our analysis will be valid when a/ξ > O(1), or χ > O(1).

The perturbation methods we use, while approximate, pose less of problem with regard to the

validity of our analysis. We noted in Section 2 that the parameter ς must be small. We can estimate

how small it must be from dimensional analysis; specifically, the product `2ς should be the largest

combination of terms involving ς in our perturbation analysis, so that whenever `2ς � 1, our

analysis should be valid. We can estimate ς from its definition in Eq. (3). Taking ξ = 1 nm and

letting N ≈ 300, we find that ς ≈ (7.5× 10−3)/χ2 nm−2. If we use χ = 10 as an upper limit

suggested by our analysis, then we find `2ς ≈ 7.5× 10−3 is sufficiently small in the regimes we

consider. Values as low as χ ≈ 3 yield `2σ ≈ 10−1.

5.2 Comparison of our Results to Experiments

In the previous section, we showed that the LER (as predicted by the LOK mean-field model) is

limited by an effective surface tension and a stretching energy. It is useful to consider the scaling

behavior of these energies in a generic sense; i.e.

〈ζ 2(k)〉 ∼ (k2 + c/k2)−1, (30)
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with c some constant and k a frequency. The second term c/k2 is the Fourier space scaling of

the Green’s function (which can be understood as g ∼ ∇−2 in real space). In the two asymptotic

limits k → 0 and k → ∞, the LER is dominated by the stretching energy and surface tension,

respectively. However, our perturbation approach implies that c ∼N −1/2, so that the contribution

to the LER from the stretching energy is only apparent for very long wavelength fluctuations, for

which it quickly becomes dominant. Figure 5(i) shows, for example, the asymptotic behavior of

the LER power spectral density (PSD) for a 10 nm half-pitch system; the maximum occurring

at q‖ = O(0.1) nm−1 is the approximate length scale at which the stretching energy becomes

important.

Many experiments24,41 have demonstrated a power law decay in the LER PSD with the long

wavelength behavior 〈ζ 2(k)〉 ∼ k−1.6, as opposed to the scaling given by Eq. (30) [or Eq. (31)

discussed below]. Previous works noted the disagreement between experimental and theoretical

results, although to the best of our knowledge the reasons for this disagreement are still not un-

derstood.24 Moreover, these experiments did not indicate a sharp drop as q‖ → 0. However, in

the case of Reference (26), for example, estimates of c appearing in Eq. (30) suggest that the PSD

maximum should occur near q‖ = O(1) µm−1, i.e. the smallest value of q‖ that was resolved

by their experiments; hence, we do not expect the q‖ → 0 behavior of the PSD to be evident in

the analysis of their data. In general, the stretching energy should become more important as the

half-pitch becomes smaller, since ς ∼ N −2 becomes larger in this limit (c.f. also Figure 5).

5.3 Comparison of our Results to Other Models

Starting from the LOK energy functional Eq. (2), Bosse14 studied the steady state (or equilib-

rium) LER of lamellar interfaces using a series of stochastic simulations based on a Cahn-Hilliard

update equation for the density φ ; however, he introduced subtleties that affect the LER PSD.

Specifically, his analysis is equivalent to solving the eigenvalue equation Eφ = ∇2(δH [φ ]/δφ),

where δH [φ ]/δφ indicates a variational derivative of H with respect to φ ; our analysis omits the

extra factor of ∇2. The inclusion of this factor eliminates the singular behavior of PSD as q‖ → 0;
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viz. his equilibrium PSD scales like

ζ (k)∼ (k4 + c)−1, (31)

which approaches a positive constant when k → 0 (again, c is a constant). The differences between

Eqs. (30) and (31) can be detected by experimentally, although, as we have indicated above, the

k → 0 behavior of the system can likely only be studied for systems with half-pitches less than

about 10 nm.

When the stretching energy is negligible, our model of LER reduces to another well known

phase field model derived by Semenov, who found a nearly identical expression to Eq. (26) (with

ς = 0) by starting from a free energy significantly different from Eq. (2).10,24 This fact suggests a

deeper connection between the analysis of Refs. [9,21] and ours, which we explore here. Starting

from his expression,

F [φA,φB] =
a2

4V

∫
dΩ

(∇φA)
2

φA
+

(∇φB)
2

φB
+

4V χ
a2 φAφB, (32)

and noting that φB = 1−φA and φ = φA −φB, it is possible to write Eq. (32) as

F [φ ] = c
∫

dΩ
[

1
1−φ 2

]{
ξ 2 (∇φ)2

2
+

(1−φ 2)2

4

}
, (33)

where c is some constant.

Equation (33) is of the same form as Eq. (2) (with ς = 0) except for the factor of (1− φ 2)−1

appearing in the integrand. This similarity ensures that both Eqs. (2) and (32) have the same min-

imum, as can be seen by taking a variational derivative of Eq. (32) with respect to φ . Specifically,

if L1 = (1−φ 2)−1, L2 = (ξ 2/2)(∇φ)2 +(1−φ 2)2/4, and L = L1L2, then

δL

δφ

∣∣∣∣∣
φ=φ0

= L2
δL1

δφ

∣∣∣∣∣
φ=φ0

+L1
δL2

δφ

∣∣∣∣∣
φ=φ0

= 0, (34)
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by virtue of the fact that φ0 minimizes L2 and L2[φ0] = 0; therefore, φ0 is also a minimum of

Eq. (32).

The factor of (1− φ 2)−1 appearing in Eq. (32) necessarily leads to a different equation for

the fluctuations of the system around the configuration φ0. Remarkably, however, Semenov’s free

energy yields an equation for ψ that has the exact form of Eq. (10), but with l = 2 (as opposed

to l = 3 for the LOK model). For l ≥ 2 it is known36 that the Pöschl-Teller has bound states

analogous to the f1 fluctuation modes, which allowed Semenov to define the LER on the basis of

these interface fluctuations. The l = 3 case differs notably from the l = 2 case in that the former

also predicts the existence of f2 fluctuations while the latter does not.

5.4 LER in a manufacturing setting

The ITRS specifies that the LER must satisfy 3σ < 1.1 nm at the 11 nm node. In Figure 5 we

estimate values of χ that will be required to reach these goals. Using the the values N = 300,

ξ = 1 nm, ` = 10 nm,6 Eq. (27) predicts that values of χ ≈ 5 will be required to reduce the

LER to within acceptable limits. These values of χ are extremely large relative to what is seen in

many experiments, where typical values range from roughly 10−2 for PS-PMMA [poly(styrene-b-

methyl methacrylate)] to 10−1 for PS-PDMS [poly(styrene-b-dimethylsiloxane)].25–28,42 Although

effective values of χ as large as 1 have been reported in some systems,26 our results suggest that

at least a five-fold increase in χ is necessary to reach target goals at the 11 nm node.

Our analysis reveals a connection between the LER and the number and position of microdomains

between template boundaries. Figure 5(ii) provides a representative illustration showing that for

fixed χ and `, decreasing the number of microdomains can reduce the LER by a factor of 20% or

more. On the other hand, the position of the individual microdomains within the actual system has

a much smaller effect on the LER.

While the values of χ that we report here are relatively large, we caution that the analysis herein

should be taken more as a qualitative estimate of the necessary system parameters as opposed to a

strict, quantitative prediction. As noted in Section 5.1, we begin to push the model to the limits of
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its validity when χ � 1 and the half-pitch approaches 10 nm or less.

We end this section by noting that the Eqs. (27) and (29) reveal an interesting, although not en-

tirely unexpected, connection between the LER and the SAV. Specifically, the mean-field interface

width ξ sets the length scale of both the LER and the SAV. Physically, this is reasonable, since

both quantities refer to properties of the interface itself. However, in the context of a continuum

theory, where the notion of an interface itself does not arise explicitly, it is gratifying to find that

all of its associated length scales are nonetheless determined by the single parameter ξ . This in-

ternal consistency suggests that despite its possible shortcomings, the LOK phase-field model can

provide significant physical insight into the behavior of block copolymer systems.

6 Conclusion

In this paper, we used the Leibler-Ohta-Kawasaki phase field model to calculate the LER and SAV

of microdomain interfaces for a system of lamellar block copolymers whose order is established

by straight, parallel template walls; we showed how the LER depends on the Flory-Huggins pa-

rameter, index of polymerization, and position of the interface relative to the template walls. Our

analysis reveals that the main contributions to LER arise from (i) a surface tension resulting from

the A-B monomer repulsion, and (ii) an energy associated with stretching the polymers in the

vicinity of an interface fluctuation. Using values of the N (the index of polymerization) and ξ

the (interface thickness) that correspond roughly to an 11 nm half-pitch, we predict that the Flory-

Huggins parameter χ must be increased by at least a factor of five above current experimental

values in order to reach target goals for the LER set forth in the ITRS. As our analysis is concerned

primarily with fluctuations in the bulk of the film (i.e. away from the top and bottom of the sys-

tem), an important extension of our work is to include the effects of polymer interactions with both

the substrate and the material bounding the film from above; we speculate that one can account for

such effects by the introduction of a suitable surface integral to the LOK Hamiltonian.
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