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Abstract. Finite bandwidth and finite exposure time place a fundamen-
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Introduction

artially coherent imaging in a lithographic exposure tool is
sually modeled in an idealized fashion. For example,
ohler illumination is treated as a set of plane waves,

pread over a given range of angles, with each plane wave
aken to be incoherent with respect to every other plane
ave. The term “incoherent” here means that when we

ompute the intensity by squaring the sum of the plane
aves, we are to drop all the cross terms and keep only the

um of the squares of each plane wave with itself. Since the
ntensity of any plane wave is uniform, the sum of the
ntensities of a set of incoherent plane waves is also uni-
orm. But why do we drop the cross terms? After all, Max-
ell’s equations are linear, therefore superposition holds

nd the cross terms should be there. The answer is the cross
erms really are there but they vary with time for any illu-
ination that has a finite bandwidth and they would con-

ribute if we detected the instantaneous intensity. But what
ounts for exposure is the time integrated intensity or dose.
n this case, since the cross terms are time varying, they
ntegrate approximately to zero over times long compared

Current address: Institute of Standards and Technology, Center for Nano-
cale Science and Technology, Gaithersburg, Maryland 20899.
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to the reciprocal of the bandwidth. The diagonal terms on
the other hand are static, i.e., not time varying, and hence
their integral increases linearly with time. So, although the
integrals of the cross terms are on average zero, there will
be some residual root-means-square �rms� spatial variation
in the dose. It is the statistics of this residual dose nonuni-
formity that we discuss in this work.

This effect can be understood from a physical point of
view by noting that the instantaneous interference pattern
formed by multiple plane waves with arbitrary or random
phases and frequencies spread over a finite bandwidth is a
nonstationary, i.e., time varying, 100% contrast speckle
pattern.1,2 The pattern is not stationary in time due to the
finite bandwidth, which constantly changes the relative
phases of the plane waves. The assumption here is that the
instantaneous frequency of each plane wave, in Kohler il-
lumination for example, is uncorrelated with the all other
plane waves and that the frequency of each plane wave
varies more or less randomly over the full bandwidth dur-
ing the scale of the time integration, i.e., during the expo-
sure time. This assumption is equivalent to requiring spatial
incoherence in the source pupil, which is the standard as-
sumption in partially coherent imaging. �If the plane waves
all had the same time-varying frequency, then the speckle
pattern would be stationary and would not average in time.�
The accumulated dose or time integral of this nonstationary
Oct–Dec 2009/Vol. 8�4�1
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peckle pattern will be smoother than a snapshot of the
peckle pattern, with the uniformity improving with in-
reasing integration time and/or bandwidth of the illumina-
ion. But, for any finite integration time and/or finite band-
idth, there will always be some residual illumination
onuniformity or residual speckle. The mathematical origin
f this residual nonuniformity can be understood almost
rivially by considering the integration of sin��� and sin���2

ver a range of � much greater than 2�, where sin��� and
in���2 act like the cross terms and diagonal terms between
lane waves, respectively. For each 2� segment of the
ange, sin��� integrates to zero and hence the net value of
ts integral comes solely from the last fraction of 2� in the
ntegration range. On the other hand, sin���2=1 /2�1
cos�2���. The constant term 1 /2 integrates to the range/2
nd the cos�2�� term leaves only a small residual, just like
he sin��� integration. Normalizing by the range/2, we see
hat the contribution from the sin���2 term is fixed at unity
ut the cross terms decrease as 2/range and are not gener-
lly zero for any finite integration range. The practical im-
lication of all this is that for a short enough integration
ime and/or a narrow enough bandwidth, the illumination
onuniformity can be large compared to the specification
n dose uniformity. But this is precisely where lithographic
xposure tools are designed to operate. High throughput
equires short integration times, and minimizing chromatic
berrations in refractive optical systems requires narrow
andwidth.

We present a detailed analysis of the residual speckle
hat occurs in a generic type of lithographic illumination
ystem. The work is organized as follows. Section 2 pre-
ents a simple derivation of the expected level of residual
peckle under general conditions of illumination and relates
his value to dose nonuniformity. Section 3 presents an
verview of the illumination system. Section 4 describes
ow we represent an excimer pulse. Section 5 analyzes,
tep by step, the propagation of an excimer pulse through
he illuminator. In Sec. 6 the mean dose and the expected
esidual speckle or rms variation in the dose is calculated.

Simple Derivation of Residual Speckle
et T be the integration time and let � be the correlation

ime for the speckle pattern, i.e., how long on average it
akes the speckle pattern to become uncorrelated with itself.
he correlation time is related to the bandwidth ��, in
ertz, via �=1 / �2����. It follows from this that the num-
er of statistically independent speckle patterns N that are
ummed during the exposure time is given by

Fig. 1 Schematic
. Micro/Nanolith. MEMS MOEMS 043003-
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N � T/� = 2�T�� = 2�cT
��

�2 ,

where � is the wavelength and c is the speed of light. For
uncorrelated processes we expect the root mean square or
1� variation to grow as �N, and hence the relative nonuni-
formity varies as �N /N=1 /�N��� /T. Using the fact that
each speckle pattern by itself has 100% contrast, we expect
the 1� dose nonuniformity to be on the order of

�%dose ��1

2
� �2

2�cT��
� 100 % ,

where the 1 /�2 comes from assuming two independent po-
larizations of the field. Taking the nominal value of 30
pulses to expose with each pulse being �20 nsec long and
assuming a bandwidth ���0.2 pm at �=193 nm, we find
�%dose�1%, which is essentially the entire dose budget.

The spatial distribution of the speckle pattern depends
on the pupil fill geometry with the autocorrelation function
being the Fourier transform of the pupil fill geometry. This
is shown in detail next. See also the work by Rydberg et
al.,3,4 Kritsun et al.,5 and Noordman et al.6 For now, note
that the characteristic length scale or spatial period for the
residual nonuniformity is the length scale of the speckle
pattern itself, which is roughly � / �2�NA�, where � refers
to top-hat pupil fill and NA is the numerical aperture of the
optics measured at the wafer. For top-hat pupil fills on the
order of 0.6 to 0.8, this length scale is on the order of the
minimum printable feature size, and therefore we would
expect this dose nonuniformity to manifest itself as line
edge roughness with a period on the order of twice the
resolution.

3 Illuminator Design
A generic design for an illuminator based on a diffractive
optical element �DOE� is shown in Fig. 1. After beam ex-
panding, and possibly pulse stretching, the beam coming
from the excimer passes through the DOE, which is de-
signed so that the diffraction pattern it generates has the
geometry of the desired pupil fill. The lens with focal
length f1 would actually be a zoom system, but we treat it
as a single lens and adjust the value of f1 as needed to
incorporate the zoom aspect into the model. This lens
places the desired diffraction pattern on the entrance sur-
face of the micro-flies eye �MFE�. The field entering each
lenslet of the MFE is magnified and reimaged onto the
illumination area at the reticle conjugate plane with the
angles of incidence corresponding to the diffraction angles

of an illuminator.
layout
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rom the DOE. The pattern can be further propagated in
tandard fashion to the reticle plane itself or to the wafer
lane.

Comment on the Modeling Approach
n general, at the reticle plane an illumination system will
ix both transverse and longitudinally shifted regions of

he incident excimer pulse. As long as the longitudinal shift
s much less than the longitudinal coherence length, the
ongitudinal shift can be ignored and standard physical op-
ics methods for monochromatic fields that have an infinite
ongitudinal coherence length can be used to compute the
ropagated fields. The longitudinal coherence length is ap-
roximately �2 /��, where �� is the full-width-half-
aximum bandwidth of the laser. The longitudinal shift

aused by the illuminator can be estimated as the product of
he maximum NA in the illuminator and the maximum ra-
ius of the intensity distribution inside the illuminator. For
he illuminator considered here, the maximum angle is
oughly the illumination NA, and the maximum transverse
adius is the NA times the largest focal length, and so the
ongitudinal shift is on the order of NA2� fmax. We assume
hat this shift is much less than the longitudinal coherence
ength, in which case it is the transverse spatial coherence
ength that controls the mixing of the speckle patterns at the
eticle plane. It is certainly possible to do the analysis that
ollows to include the effect of the longitudinal coherence
ength, but this nominally leads to a much more complex
alculation.

Since the pulse is finite and propagates at a finite speed,
he time at which a given portion of the pulse arrives at
ach element in the illuminator is different. This time lag is
oughly 2f1 /c to get from the DOE to the MFE, and
oughly 2f2 /c to get from the MFE to the reticle �or reticle
onjugate� plane. We effectively ignore this time lag and
efine t=0 at each element to be the time the front edge of
he pulse arrives at that element. We also define z=0 sepa-
ately for each element to be the �entrance or exit� plane of
he element. With this notation and ignoring the longitudi-
al shearing of the pulse, the parameter z just floats through
he calculation and is not shown explicitly until the end
hen, to compute the statistics, we do an integral over z to

ccount for the contribution of the entire pulse.
For the low NA at the reticle plane or at any conjugate

lane with close to unit magnification, polarization effects
an nominally be ignored. But at the wafer where the NA is
n the order of unity or greater, polarization effects must be
roperly accounted for to accurately predict the illumina-
ion intensity distribution. To add in polarization effects, we
eed to include the electric field vector in the prior consid-
rations. This can be done by “attaching” the appropriate
lectric field vector to each plane wave incident on the
afer, which is the standard procedure used in modern
odels of partially coherent imaging. Since our purpose

ere is to understand the fundamental origin of residual
peckle, we do not consider polarization effects any further.

Representing the Excimer Laser Pulse
xcimer laser beams are neither spatially nor temporally
oherent. The lack of temporal coherence follows from the
nite bandwidth �� of the beam. The finite spatial coher-
nce follows from the fact that at any point in time, differ-
. Micro/Nanolith. MEMS MOEMS 043003-
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ent spatial positions inside the beam have �slightly� differ-
ent wavelengths �, and hence their phase difference
changes with time. Clearly if the beam had zero bandwidth
��=0, then it would be perfectly temporally coherent. This
also implies perfect spatial coherence, since all positions
within the beam would then also have exactly the same
wavelength and hence fixed relative phases.

Data from at least one excimer �see Fig. 2� shows that
the autocorrelation or coherence of a pulse with itself as
measured by the interference contrast does not necessarily
go to zero with large spatial separation, but rather to a
constant nonzero value. This nonzero “floor” in the contrast
occurs in both the longitudinal and transverse directions
with the same nonzero value in all directions. The model
described here automatically allows for the existence of a
contrast “floor,” but can also handle the zero floor case
depending on the parameter values chosen.

To model the excimer pulse, let the field of the pulse �at
say time t=0 just as it begins to impinge on the DOE� be
given by

	�r�� = A�r�exp�ikz + i��r��� . �1�

Here A�r�� is a real valued function giving the overall shape
of the pulse and k=2� /� with � the nominal wavelength.
The values of z correspond to positions just upstream of the
DOE, which we take to be at z=0. The variation in the
phase ��r�� is treated as a random function of position r�
= �x ,y ,z� within the pulse. The statistics of ��r�� are taken to
be Gaussian �in function space�. This can be written as

P��� = N exp�−
1

2
	 d3rd3r���r��C−1�r�,r�����r���
 , �2�

where N is a normalization factor and the notation P��� is
meant indicate that P depends only on the functional form
of ��r�� and not on its value at any particular position r�.
Since the overall average phase of the pulse is irrelevant,
we have defined P��� so that ��r�� has zero mean, ���r���
=0. The function C−1�r� ,r�� is meant to indicate the recipro-
cal or inverse of the function C�r� ,r��, i.e.,

Fig. 2 The graphs show the average fringe contrast, measured us-
ing two-pinhole interference, as a function of �a� horizontal pinhole
position and �b� vertical pinhole after a 4� magnification of the
beam. The contrast has been corrected by dividing the raw contrast
by the theoretical contrast predicted based on the relative energy
passing through each pinhole. The approximate 15 to 20% floor in
the fringe contrast is clearly visible.
Oct–Dec 2009/Vol. 8�4�3
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d3sC−1�r�,s��C�s�,r��� = 
�r� − r��� . �3�

ext we see that C�r� ,r��= ���r����r���. The generating func-
ional Z�J� for the autocorrelation functions of ��r�� is de-
ned as the �functional� Fourier transform of P���,

�J� =	 D� exp�i	 d3rJ�r����r��
P��� . �4�

t can be evaluated exactly by completing the square in the
xponent to get

�J� = exp�−
1

2
	 d3rd3r�J�r��C�r�,r���J�r���
 . �5�

ere D� indicates functional integration. Functional tech-
iques such as these are described in many books on quan-
um field theory. See for example the excellent book by
ee.7

The definition of Z�J� implies

1� =	 D�P��� = Z�0� = 1,

��r��� =	 D���r��P��� = �− i
D

DJ�r��
Z�J��

J=0

= 0,

��r����r���� =	 D���r����r���P���

= �−
D2

DJ�r��DJ�r���
Z�J��

J=0

= C�r�,r��� , �6�

here D /DJ�r�� indicates functional differentiation. The
rst result shows that Z�J� as given properly accounts for

he normalization of P���, the second that the mean value
f ��r�� vanishes as desired, and finally that C is the auto-
orrelation function of ��r��. Next we show that this ap-
roach for representing the excimer pulse automatically al-
ows for a nonzero contrast floor with an amplitude that
epends on the root-mean-square �rms� variation of ��r��.
ote that to determine the speckle we need the expectation
alue of products of exp�i��, e.g., �exp�i��r��− i��r����. In
erms of these expectation values, the Gaussian statistics
sed here smoothly transition in the limit of ���r��2�=�2

pproaching infinity to the results obtained using the stan-
ard uniform 0 to 2� distribution for �. This is shown
riefly in the Appendix.

Figure 3 provides an illustration of this way of repre-
enting a pulse. The upper graph illustrates schematically
n “ideal” pulse A�r��exp�ikz� propagating in the horizontal
r +z direction. The center wavelength corresponds to the
alue of k and the bandwidth is controlled by the length of
�r�� in the propagation direction. The decrease in ampli-

ude around the edges is meant to correspond to the overall
ength and width of the pulse as given by the amplitude
actor A�r��. The lower graph illustrates the case where ��r��
. Micro/Nanolith. MEMS MOEMS 043003-
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is not zero. The wavefronts are no longer flat or uniformly
spaced. The nonflatness leads to the extra beam divergence
and the nonequal spacing to the increase in bandwidth be-
yond that corresponding to the length of the pulse. The
bandwidth of the ideal pulse in the upper graph would be
on the order of 10−8�, since the width of its longitudinal
Fourier transform is controlled by the length of the pulse in
the z direction, which for a real pulse is about 108 wave-
lengths. The phase variations within a real pulse increases
the bandwidth significantly so that it is actually on the order
of 0.1 pm�10−6�. Detailed evaluation of the bandwidth
and contrast of this model for the pulse is given next.

The pulses shown in Fig. 3 are meant as illustrations
only, since they are only about 40 wavelengths long. An
example of what ��r�� itself looks like is shown in Fig. 4.
The statistics of ��r�� are described by two parameters, its
rms fluctuation throughout the pulse �= ���r��2� and its cor-
relation length �. Essentially � controls the size of the fluc-
tuations and � controls how fast they vary with position in
the pulse.

Fig. 3 The upper graph is an illustration of the field of an ideal
���r��=0� perfectly collimated excimer pulse propagating horizontally.
The lower graph shows how we model a real excimer laser pulse,
i.e., one with ��r���0. An example of what ��r�� itself looks like is
given in Fig. 4. In this case, the wavefronts are not flat nor equally
spaced. The nonflatness leads to the added beam divergence and
the nonequal spacing to the bandwidth. The pulses shown are only
about 40 wavelengths long. Real pulses are on the order of 108

wavelengths long.

Fig. 4 Illustration of a random local phase variation ��r�� throughout
the volume of the pulse. The vertical axis is the phase variation and
the horizontal axes correspond to the x and z directions in Fig. 3.
Oct–Dec 2009/Vol. 8�4�4
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Finally, it should be noted that this way of representing
he pulse obscures some aspects of the physics. In particu-
ar, the fact that ���r����r��� goes to zero for large transverse
patial separations can occur only after sufficient time inte-
ration to allow for the temporal incoherence to produce
ransverse spatial incoherence. Since the pulse is propagat-
ng predominantly in the z direction, the time integration
an be replaced by a z integration and so we should con-
ider �¯� to be equivalent to an integral in z over a distance
, which is much longer than the longitudinal coherence

ength �z, i.e.,

��r����r���� = 	
L��z

dZ��r� + Zẑ���r�� + Zẑ� ,

here ẑ is the unit vector in the z direction.
The Gaussian probability distribution we use for the

unction ��r�� should not be confused with the shape of the
utocorrelation function of ��r��, i.e., with ���r����r���, which
an in principle be anything but commonly is taken to be
ither a Gaussian itself or an exponential or whatever func-
ion best fits the data. Often the autocorrelation function is
sotropic and translation invariant, in which case we have

��r����r���� = �2f��r� − r���/�� = �2f�R/�� , �7�

here

= �r� − r��� = ��x − x��2 + �y − y��2 + �z − z��2�1/2

s the distance between positions r� and r�, and � is the au-
ocorrelation or coherence length of ��r��. The function f�R�
s normalized with f�0�=1, so that ���r��2�=�2 with � as the
ms fluctuation in ��r��. An ideal pulse with ��r��=0 would
ave �=����r��2�=0 and thus perfect coherence. The func-
ional form of f is usually either Gaussian f�R /��
exp�−R2 /�2� or exponential f�R /��=exp�−R /��, where in
oth cases � is the correlation length of ��r��.

Now, to compute the speckle we need �exp�i��r��
i��r����. This can be evaluated directly by noting that

exp�i��r�� − i��r����� = �exp�i	 d3sJ�s����s��
� , �8�

ith

�s�� = 
�r� − s�� − 
�r�� − s�� . �9�

hen, substituting this into the result for Z�J� given before,
e get

exp�i��r�� − i��r�����

= exp�−
1

2
���r��2� −

1

2
���r���2� + ���r����r����


= exp�− �2�1 − f�R/���� . �10�

n the limit of large spatial separations, the autocorrelation
unction f�R /�� generally approaches zero and we have
exp�i��r��− i��r����=exp�−�2�0 for R�1. Thus, as
laimed this approach automatically allows for a nonzero
. Micro/Nanolith. MEMS MOEMS 043003-
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floor in the contrast with the floor depending on the rms
variation of the phase, �=����r��2�. The implications that
�exp�i��r��− i��r���� does not strictly go to zero at large spa-
tial separations are discussed in more detail later.

5.1 Spatial Coherence and Contrast

The spatial coherence function comes from interfering 	 at
two different positions r�1 and r�2.

�	�r�1� + 	�r�2��2. �11�

Since ��r�� is a random function, we need to take the expec-
tation value of this to determine what the coherence func-
tion looks like “on average.” Thus we need to evaluate

��	�r�1� + 	�r�2��2�

= ��	�r�1��2 + �	�r�2��2 + 	�r�1�	�r�2�* + 	�r�1�*	�r�2��

= ��	�r�1��2� + ��	�r�2��2� + �	�r�1�	�r�2�*�

+ �	�r�1�*	�r�2�� , �12�

where � indicates the complex conjugate and �	�2=		*.
Evaluating each term using Eq. �10� and the definitions
given before, then substituting back into ��	�r�1�+	�r�2��2�
yields

��	�r�1� + 	�r�2��2� = A�r�1�2 + A�r�2�2 + 2 cos�k�z1 − z2��

�A�r�1�A�r�2�exp�− �2�1 − f�R/���� .

�13�

The overall factor of A�r�1�A�r�2� is just the overlap of the
pulse shape with itself. This is usually not relevant when
looking at contrast, since relevant values of r are generally
much smaller than the size of the pulse. We eliminate it by
assuming A�r�1��A�r�2��A=constant for relevant positions
r�1 and r�2, which gives

��	�r�1� + 	�r�2��2� = 2A2�1 + cos�k�z1 − z2��

�exp�− �2�1 − f�R/����� . �14�

The cosine term oscillates rapidly between a maximum of
+1 and a minimum of −1, so the contrast � that is �max
−min� / �max+min� reduces to

��R� = exp�− �2�1 − f�R/���� . �15�

For r�=r�� so that R=0, we get ��0�=1 as expected. But, and
here is the important point, in general we expect that
f�R /��→0 for r�� and that ��R� would also go to zero,
but it does not. Rather ��R� goes to the fixed nonzero value
exp�−�2�. Of course for � values on the order of 2� or
larger, exp�−�2��10−17, which, for all practical purposes is
zero. But for � values much less than 2�, exp�−�2� is
distinctly and measurably not zero. Thus this model auto-
matically predicts that the contrast does not go to zero but
rather to a fixed nonzero value, or floor, for large R as long
as � is much smaller than 2�. This makes sense, since for
phase fluctuations that are much less than 2� the contrast
Oct–Dec 2009/Vol. 8�4�5
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annot be zero. To match up with an �20% floor, as seen in
he excimer contrast data in Fig. 2, we need ��1.27

0.2�2�, which yields exp�−�2��0.2=20%.
Finally, to describe a real excimer pulse we need to ad-

ust the form of f�R /�� so that it has different coherence
engths in the x, y, and z directions. This can be done by
eplacing f�R /�� with

f�� �x1 − x2�2

�x
2 +

�y1 − y2�2

�y
2 +

�z1 − z2�2

�z
2 
1/2� � f�R� ,���

nd ��R� with

�R� ,��� = exp�− �2�1 − f�R� ,����� , �16�

o account for different coherence lengths �x ,�y ,�z in the x,
, and z directions, respectively.

.2 Spatial Frequency and Pulse Bandwidth
he bandwidth of the pulse follows from its Fourier trans-

orm, given by

˜ �p�� =	 d3r exp�− ip� · r��	�r��

=	 d3r exp�− i�p� − k�� · r� + i��r���A�r�� . �17�

ince we are interested only in the deviation in frequency
rom the nominal value k�, let p� −k�→p� so that now p� mea-
ures the deviation from k� rather than the absolute fre-
uency. We now have

˜ �p�� =	 d3r exp�− ip� · r��	�r��

=	 d3r exp�− ip� · r� + i��r���A�r�� . �18�

he expectation value of the square of 	̃�p�� is given by

�	̃�p���2� =	 d3r1d3r2 exp�− ip� · �r�2 − r�1��A�r�1�A�r�2�

��exp���r�2� − i��r�1��� . �19�

ubstituting results from these and using

�r�� =	 d3p

�2��3 Ã�p��exp�ip� · r�� ,

e get

�	̃�p���2� =	 d3p1d3p2

�2��6 Ã�p�1�Ã�p�2� 	 d3r1d3r2 exp�i�p�1

+ p�� · r�1 + i�p�2 − p�� · r�2�exp�− �2�1 − f�R� ,����� .

�20�

ince A�r�� is defined to be purely real, it’s Fourier trans-

orm Ã�p�� satisfies the identity Ã�−p��= Ã�p��*.
. Micro/Nanolith. MEMS MOEMS 043003-
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To separate out the constant background and normalize
the nonconstant part of exp�−�2�1− f�R� ,�����, first add and
subtract exp�−�2�, then multiply and divide exp�−�2�1
− f�R� ,�����−exp�−�2� by exp��2�−1 to get

exp�− �2�1 − f�r�,����� = �1 − exp�− �2��

�� exp��2f�R� ,���� − 1

exp��2� − 1
� + exp�− �2�

� �1 − �0�G�R� ,��� + �0, �21�

where �0=exp�−�2� and G�R� ,�����exp��2f�R� ,����
−1� / �exp��2�−1�. G�R� ,��� is 1 at r=0 and goes to 0 for

�R� �� ����. It is just the experimentally measured contrast
shape with the floor subtracted and remaining variation
scaled to go from 1 at r=0 to 0 for r large in any direction.
This is shown in Fig. 5.

Putting this all together, we have

��	̃�p���2� = �1 − �0� 	 d3p1d3p2

�2��6 Ã�p�1�Ã�p�2� 	 d3r1d3r2

�exp�i�p�1 + p�� · r�1 + i�p�2 − p�� · r��G�R� ,���

+ �0	 d3p1d3p2

�2��6 Ã�p�1�Ã�p�2� 	 d3r1d3r2

�exp�i�p�1 + p�� · r�1 + i�p�2 − p�� · r�2� . �22�

The second term is simply �0�Ã�p���2, which is the contri-
bution to the bandwidth coming from the pulse shape itself
scaled by the factor �0=exp�−�2�.

To evaluate the first term, make the change of variables
t=1 /2�r�1+r�2� and R� =r�2−r�1, then using d3texp�i��� 1

+�� � · t�= �2��3
��� +�� �, the first term becomes

Fig. 5 The graph shows the difference between the contrast � and
the function G. � ranges from 0 to 1 and includes the floor, which in
this case is set at 0.2. The values of � are read off of the left vertical
axis. The values of G are read off of the right vertical axis. G has the
floor removed so that it goes to zero for large spatial separations,
and it has been rescaled so that it ranges from 0 to 1. Other than
that, the shape of G is exactly the same as the shape of �.
2 1 2
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1 − �0� 	 d3p�

�2��3 �Ã�p����2	 d3R exp�− i�p� − p��� · R� �G�R� ,���

= �1 − �0� 	 d3p�

�2��3 �Ã�p����2G̃�p� − p��,��� , �23�

fter defining G̃�p� ,���=d3Rexp�−ip� ·R� �G�R� ,���. The final

esult is just the convolution of G̃ with �Ã�2. Nominally the
ulse size is much larger than the correlation length in any

irection, and so its Fourier transform Ã is generally much

arrower than G̃. For a real excimer pulse, this is certainly
rue in the longitudinal and vertical directions, but only
pproximately true in the horizontal direction. But just to
ee how things scale, we make this assumption in which
ase the first term becomes

1 − �0� 	 d3p�

�2��3 �Ã�p����2G̃�p� − p��,���

� �1 − exp�− �2��G̃�p� ,���VA, �24�

here VA�d3p� / �2��3�Ã�p����2 is the total volume of the
ulse shape in frequency space. Combining this with the
econd term and normalizing by VA yields

��	̃�p���2�
VA

� �1 − �0�G̃�p� ,��� + �0
�Ã�p���2

VA
. �25�

hus we have that the bandwidth is the sum of two terms.
he first term is essentially the bandwidth corresponding to

he measured coherence or contrast of the pulse, since as
hown before F has the same shape as �, and it is weighted
y 1−�0=1−exp�−�2�. The second term is the bandwidth
f the pulse shape itself multiplied by �0=exp�−�2�. Hence
or small enough �0 or equivalently large enough �, the
patial frequency distribution and therefore the bandwidth
n this model is controlled predominantly by the width of
he coherence or autocorrelation function as desired.

Representing the Diffractive Optical Element

ince we are interested only in the fractional fluctuation of
he intensity and not its absolute value, there is no need to
eep track of overall constant factors such as the 1 /2� in
he definition of the Fourier transform. Hence from now on,
e drop all such overall constant factors.
The DOE will be taken to be a quasirandom binary �0

nd �� phase grating. It can be represented as a binary
ransmission phase factor, i.e.,

DOE���� = + 1 or − 1, �26�

epending on position x ,y. Here �� = �x ,y� represents a po-
ition in the various xy planes of the optical elements.

hich plane, DOE, MFE, reticle, etc., should be clear from
he context. The function TDOE���� is designed to produce a
articular pupil fill, and so the transmission factor can be
epresented directly in terms of this desired pupil fill as
. Micro/Nanolith. MEMS MOEMS 043003-
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�T̃DOE��� ��2 = �	 d2�TDOE����exp�− i�� · ����2

= F��� �2, �27�

where �� = ��x ,�y� is spatial frequency in the xy plane and

F��� �2 is the desired source pupil fill intensity or at least a
close approximation to the desired fill intensity. We assume

that T̃DOE��� � can be written as F��� �exp�i���� �� with F��� �
purely real and defined by the desired pupil fill, and ���� �
being a rapidly varying function of �� to account for the
diffraction properties of the DOE. The rapid variation of
���� � implies that exp�i���� �− i���� ��� acts like a 
 function
when integrated with functions that are slowly varying
compared to it, i.e., exp�i���� �− i���� ����
��� −�� ��. The
fact that the DOE is a binary grating and that TDOE is purely
real means that the plus and minus diffraction orders from
the DOE have the same amplitude but opposite phase, i.e.,

F��� �exp�i���� �� = F�− �� �exp�− i��− �� �� . �28�

In general F��� �=F�−�� � for most pupil fill geometries. On

the other hand ���� �=−��−�� � means that � at +�� and −��

are correlated and so we must augment the prior statistics
for � with

exp�i���� + i������ � 
�� + ��� .

The extra contribution this makes, although present in prin-
ciple, turns out to be negligible compared to regular terms,
at least in the optical configuration considered here.

Finally note that convolving the DOE pattern T���� with
itself yields the Fourier transform of the source pupil ge-
ometry, S�R� �,

	 d2�TDOE��� + R� /2�*TDOE��� − R� /2�

=	 d2�d2��F��� �F��� ��exp�− i���� � + i���� ���

�exp�− i��� + �� �� · R� /2�
��� − �� ��

=	 d2�F��� �2exp�− i�� · R� � � S�R� � .

7 Field at the Reticle „or Reticle Conjugate…
Plane

It follows from the illuminator design that the field at the
entrance plane of the MFE, 	MFE, is the Fourier transform
of the field at the exit plane of the DOE,

	MFE���� = 	
DOE

d2�� exp�− i
k

f1
�� · ���
TDOE�����exp�i������� .

�29�

Here we have assumed that A��� ,z��1 across the entire
area of the DOE, and we have dropped the z dependence of
�.
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The field at the reticle �or reticle conjugate� plane 	R is
he superposition of low NA images of the field across the
ntrance plane of each lenslet of the MFE, appropriately
agnified to cover the exposure slit area and with an angle

f incidence at the reticle plane proportional to the
ransverse position in the MFE entrance plane, which we
rite as ��MFE=M ·��+���. Here ��� is the position in the

eticle plane corresponding to ��MFE. The term M ·���
Mxx�+Myy� with Mx and My defined so that as ��� ranges
ver the full reticle plane M ·��� ranges only over the size of
ne lenslet. The lenslets are labeled by �= ��x ,�y�, with �x

nd �y being integers labeling the lenslets in the MFE, and
�� is the position of the center of lenslet � in the entrance
lane of the MFE. To be specific, let �x=−Nx ,−Nx+1, . . .
1 ,0 ,1 , . . .Nx−1,Nx and �y =−Ny ,−Ny +1, . . .
1 ,0 ,1 , . . .Ny −1,Ny, so that we have 2Nx+1 lenslets in the

direction and 2Ny +1 lenslets in the y direction. �
�0,0� is the center lenslet. Taking the lenslets to be rect-
ngular with size Hx

lenslet and Hy
lenslet in the x and y direc-

ions, respectively, gives x�=�xHx and y�=�yHy with mag-
ification factors

Mx =
Hx

lenslet

Hx
ref =

fx
lenslet

f2
� 1, My =

Hy
lenslet

Hy
ref =

fy
lenslet

f2
� 1,

�30�

here Hx
ret and Hy

ret are the widths of the illuminated area of
he reticle plane, and fx

lenslet and fy
lenslet are the focal lengths

f the MFE lenslets in the x and y directions, respectively.
he point spread function �PSF� in the reticle plane of the

ectangular lenslets is

Plenslet�x,y� = Hx
lensletHy

lenslet

sin� kHx
lensletx

f2
�

kHx
lensletx

f2

sin� kHy
lenslety

f2
�

kHy
lenslety

f2

.

�31�

Using generic values for f2 of several hundred mm,

x,y
lenslet on the order of 1 mm with Hx

lenslet�2Hy
lenslet and

fx,y
lenslet on the order of 2 mm with 2fx

lenslet� fy
lenslet, we can

asily get Hx
ret�100 mm and Hy

ret�32 mm, as required for
lit illumination in the reticle �or 1� reticle conjugate
lane� for a 4� reduction system. The width of lenslet PSF
n the reticle plane 2�f2 /kHx,y

lenslet is then on the order of
ens of microns in both the x and y directions.

Combining the previous factors yields

R���� = �
�
	 d2��Plenslet��� − ����exp�i

k

f2
�� · �M · ��

+ ����
	MFE�M · ��� + ���� , �32�

here the factor
. Micro/Nanolith. MEMS MOEMS 043003-
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exp�i
k

f2
�� · ��MFE
 = exp�i

k

f2
�� · �M · �� + ����


accounts for the angle of incidence and �� is the position in
the reticle plane.

For standard pupil fills F��� �, many lenslets, both on and
off axis, are illuminated. The spatial scale of the speckle is
set by the maximum value of k�M ·���+���� / f1, and because
many lenslets are illuminated, this is much shorter than the
width of the lenslet PSF. Also, M ·�������max, and so we can
drop the M ·��� terms relative to the ��� terms. Also, we take
the pulse amplitude to be uniform, so that A����=1 inside
the pulse and zero outside. Combining all this and letting
TDOE����A����=T����, the field at the reticle �or reticle conju-
gate� is given by

	R���� = �
�
	 d2��Plenslet��� − ����exp�i

k

f2
�� · ���
	MFE�����

� �
�

exp�i
k

f2
�� · ���
	MFE����� 	 d2��Plenslet��� − ����

� �
�

exp�ik�� · ���/f2� 	 d2��T�����exp�i������

− ik��� · ���/f1� . �33�

The factor d2��Plenslet��� −���� is a constant overall factor
and so has been dropped.

8 Statistics of the Illumination Intensity:
Residual Speckle

We now evaluate the mean and rms variation of the illumi-
nation intensity in the reticle plane. For the mean intensity,
we evaluate the effect of the coherence floor, which, as
expected, leads to a fixed nonchanging speckle pattern. For
the rms variation, only the direct speckle averaging term is
evaluated.

The average intensity is given by

�IR����� = �	R����*	R�����

= �1 − �0��
�,m

exp�− ik�� · ���� − ��m�/f2�

�	 d2�1d2�2T��� 1�*T��� 2�exp�ik�� 1 · ���/f1

− ik�� 2 · ��m/f1�G��� 1 − �� 2,���

+ �0�
�,m

exp�− ik�� · ���� − ��m�/f2�

�	 d2�1d2�2T��� 1�*T��� 2�

�exp�ik�� 1 · ���/f1 − ik�� 2 · ��m/f1� , �34�

after substituting

�exp�− i���� 1� + i���� 2��� = ���� 1 − �� 2,���

= �1 − � �G�R� ,��� + � .
0 0
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First, evaluate the second term, which comes from the
oherence floor, by substituting the Fourier representation
f T����=TDOE����A����, which is the convolution of

��� �exp�i���� �� with Ã��� �. But assuming A���� covers a

arge area Ã��� ��
��� �, and so the Fourier transform of
���� is essentially just the Fourier transform of TDOE����.
hen using the standard Fourier definition of the Dirac
elta function, and as usual ignoring overall factors of 2�,
tc., we get

0�
�,m

exp�− ik�� · ����

− ��m�/f2� 	 d2�1d2�2T��� 1�*T��� 2�exp�ik�� 1 · ���/f1

− ik�� 2 · ��m/f1� = �0�
�,m

exp�− ik�� · ���� − ��m�/f2�

�	 d2�1d2�2F��� 1�F��� 2�exp�− i���� 1� + i���� 2��

�	 d2�1d2�2 exp�ik�� 1 · ���/f1 − ik�� 2 · ��m/f1 − i�� 1 · �� 1

+ i�� 2 · �� 2� = �0��
�

F�k���/f1�

�exp�− ik�� · ���/f2 − i��k���/f1���2
� �0��

�
F�

�exp�− ik�� · ���/f2 − i����2
. �35�

n the last step we have made an obvious simplification in
he notation. With �� effectively a random phase term com-
ng from the DOE, this corresponds to a single static, i.e.,
ime independent nonaveraging speckle pattern. Noting that

� corresponds to the fill geometry and that F� is 1 for a
enslet that is illuminated and 0 for a lenslet that is not, we
ee that the speckle pattern depends directly on the fill ge-
metry as expected. Example patterns are shown in Refs. 3
nd 4 and experimental results are given in Ref. 6. Figure 6
hows examples of the speckle patterns created by top-hat,
nnular, and x-dipole pupil fill.

ig. 6 Speckle patterns generated by �a� top-hat, �b� annular, �c�
nd x-dipole fill geometries. The top-hat case shows speckles that
ary in size as well as orientation, corresponding to the range of
ngles and spatial frequencies in the top hat. The annular case
hows random orientation but essentially fixed size, since the annu-
us corresponds to a fixed radial spatial frequency with a complete
ange of angles. The high frequency ripples in the dipole case come
rom the interference between the dipoles and the large scale struc-
ure from the small size of each dipole.
. Micro/Nanolith. MEMS MOEMS 043003-
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Now evaluate the first, term by substituting the Fourier
representations of T���� and G�R� ,��� and again using the
Fourier definition of the Dirac delta function, we get

�1 − �0��
�,m

exp�− ik�� · ���� − ��m�/f2�

�	 d2�1d2�2T��� 1�*T��� 2�exp�ik�� 1 · ���/f1

− ik�� 2 · ��m/f1�G��� 1 − �� 2,��� = �1 − �0�

��
�,m

exp�− ik�� · ���� − ��m�/f2�

�	 d2�1d2�2d2�F��� 1�F��� 2�

�exp�− i���� 1� + i���� 2��G̃��� ,���

�	 d2�1d2�2 exp�ik�� 1 · ���/f1 − ik�� 2 · ��m/f1 − i�� 1 · �� 1

+ i�� 2 · �� 2 + i�� · ��� 1 − �� 2�� = �1 − �0�

�	 d2���
�

exp�− ik�� · ���/f2�F�k���/f1 + �� �

�exp�− i��k���/f1 + �� ���2
G̃��� ,��� . �36�

The last line shows that this term produces a superposition
of speckle patterns with the consequent averaging that re-
duces the contrast to below the 100% value, which holds
for a single speckle pattern. We can estimate the amount of
averaging by noting first that the transform of T����
=TDOE����A���� is the convolution of F��� �exp�i���� �� with
the Fourier transform of A����, which smooths the nomi-

nally rapidly varying DOE phase ���� �, so that it varies on
a scale of 1 /Abeam, which is the scale of the width of the
Fourier transform of A����. The Fourier transform of G�R� ,���
given by G̃��� ,��� varies on a scale of 1 / �2�x2�y�
�1 /Abeam, where factors of 2 are to account for the fact
that the correlation lengths correspond to roughly the half-
width of G�R� ,���, and we want the full width. The number
of independent speckle patterns N can be estimated as the
ratio of these two scales with the result N
��1 / �4�x�y�� / �1 /Abeam�=Abeam / �4�x�y�. To verify this, we
also use a more direct approach to estimate the residual
speckle.

Finally, note that the previous result shows that the
speckle in the reticle plane in this system is periodic in the
x and y with period Px= f2� /Hx

lenslet and Py = f2� /Hy
lenslet,

respectively. This follows directly from the fact that the
speckle pattern depends spatially on exp�−ik�� ·��� / f2�
=exp�−i2��x�xHx

lenslet /�f2+y�yHy
lenslet /�f2��, which is peri-

odic for x→x+n�f2 /Hx
lenslet and y→y+m�f2 /Hy

lenslet with
n and m integers.

To estimate the number speckle patterns of N directly,
we use the following approach. Instead of treating ����� as a
smoothly varying function, treat it as constant over trans-
Oct–Dec 2009/Vol. 8�4�9
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erse areas corresponding to the transverse coherence, and
ver longitudinal positions corresponding to the longitudi-
al coherence. This is a standard approach for turning a
ontinuum statistics problem into a discrete problem.1,8–10

he transverse coherence area is on the order of a��2�x�
�2�y�=4�x�y. We label each coherence area or patch with

=1,2 , . . . ,N, where N is the number of coherence areas in
he beam Abeam /a=N, and we take �c to be uncorrelated
rom area to area, �exp�i�c− i�c���=
c,c�. Using this ap-
roach, the field at the reticle takes the form

R���� � �
�

exp�ik�� · ���/f2��
c

exp�i�c�

�	cd
2��T�����exp�− ik��� · ���/f1�

� �
�

exp�ik�� · ���/f2��
c

exp�i�c�F�k���/f1�

�exp�i�c�k���/f1�� , �37�

here the notation c indicates integration over the area of
oherence patch c. In the second line we have made the
rucial assumption that DOE has been designed so that
ach coherence patch on its own produces the full fill
eometry F��� � but with of course a different phase distri-

ution �c��� �. The average intensity is given by

IR����� � �
c
��

�
F�k���/f1�exp�− ik�� · ���/f2

− i�c�k���/f1���2
. �38�

nder the assumption that the phase distributions �c are
ncorrelated from each coherence patch c, this is a sum of

speckle patterns, and so the residual speckle is on the
rder of 100% /�N, where N is the number of spatially
ncoherent patches or transverse areas in the beam. Note
hat if the DOE is designed so that the �c are correlated,
hen the speckle averaging would be less. For example, if
ll the phases were exactly the same, then there would be
o averaging at all and the speckle contrast would remain
00%.

Discussion and Conclusions
he results show that in the limit where each pulse is many

ongitudinal coherence lengths long �and � is large enough
o that the coherence floor �0�0�, then the transverse spa-
ial coherence controls the amount of averaging, with the
esult that for a single pulse the residual speckle or contrast
s on the order of

/�N =��2�x��2�y�
Abeam

. �39�

or example, if �x and �y are both on the order of 200 �m
nd the beam area is on the order of 20�20 mm
400 mm2, then the expected contrast or rms value for a

ingle pulse is on the order of 2%. Of course for a smaller
eam area and/or larger coherence lengths, the value will
e larger. Since the light is propagating through the same
. Micro/Nanolith. MEMS MOEMS 043003-1
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DOE with the same phase �����, the expectation is that in
the nonscanned case the residual speckle pattern will be
very similar from pulse to pulse, and hence for static, i.e.,
nonscanned exposures, increasing the number of pulses will
not improve the contrast. Of course this needs to be verified
by more detailed calculations, but it does seem to follow
from the experimental results.5,6 In the scanned case the
speckle pattern is shifting from pulse to pulse nominally by
distances much greater than the transverse coherence
length, and so the patterns should average with the result
that when scanned, the contrast should be 1 /�Npulses times
the nonscanned result, where Npulses is the number of pulses
used to expose. On the other hand, as shown before, at least
for the illuminator considered here, the speckle pattern is
periodic with a period �f2 /Hlenslet. For f2 on the order of
200 mm and Hlenslet on the order of 1 mm, it follows that
the periodicity of the speckle pattern is on the order of
200��40-�m reticle scale or 10-�m wafer scale for
�=193 nm. For a wafer stage scanning at 100 mm /sec and
a laser reprate of 5000 Hz, the stage moves on the order of
20 �m per pulse, and so there is a possibility, although
highly unlikely, that the stage would move an integer num-
ber of periods and so decrease the effect of the pulse aver-
aging due to scanning. Overall we expect scanning to re-

duce the nonscanned speckle by a factor of 1 /�Npulses,
which for 30 pulses and 2% residual speckle gives about
0.4% scanned residual speckle.

The remaining question is how does the residual speckle
affect the features printed into photoresist. After all, several
percent residual speckle 3� obviously far exceeds the
specification on dose uniformity, and one would expect that
this would cause unacceptable feature size variation that
would show up as LER or at least an enhancement to LER.
We now briefly explain that in spite of the expectation that
several percent 3� dose variation is egregious, it is in fact a
small contributor to LER when compared to the main
cause, which is, to use the term loosely, acid shot noise.
�Details of this argument will be presented in a later publi-
cation.� The work done over the past several years to elu-
cidate and explain the origin of LER11–15 shows that the
dominant cause comes from the fact that chemically ampli-
fied photoresist captures the continuous smoothly varying
image pattern as a discrete distribution of acids, with the
probability of the number of acids released in a given small
volume of resist being proportional to the dose in that vol-
ume. This discrete distribution of acids is effectively a ran-
dom pattern of dots and so has essentially 100% contrast,
i.e., either an acid is released at a given position or it is not,
even if the image if perfect and speckle-free. Hence the
only effect of the speckle is to slightly increase or decrease
the probability of acid release. This is the reason speckle
does not add much to LER as seen experimentally.6 This
also explains why several percent residual speckle has not
become a major issue for chip manufacturers. The same
argument, i.e., that speckle is a small effect compared to
acid statistics, holds as well for contact holes.

Finally, it is worth noting that due to its wide bandwidth,
EUV does not have this type of speckle problem. But it
does have an issue with mask roughness generated
speckle.16
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onsider the case where ���r����r���� is spherically symmet-
ic with correlation length � and constant rms value
��r��2�=�2. Sample ��r�� at positions r�n with n
1,2 , . . . ,N and �r�n−r�m��� for all n and m. Then the
aussian statistics reduce to

P��� ⇒ P��1,�2, . . . ,�N� =
1

�2��2�N/2 exp�−
1

2�2 �
p=1

N

�p
2
 ,

here each �n ranges from −� to +�. This probability dis-
ribution gives

exp�i�n�� =
1

�2��2�N/2 	 dN� exp�i�n −
1

2�2 �
p=1

N

�p
2


= exp�− �2/2�

exp�i�n − i�m�� =
1

�2��2�N/2 	 dN�

�exp�i�n − i�m −
1

2�2 �
p=1

N

�p
2


= 
nm + exp�− 2�2/2��1 − 
nm�

exp�i�n + i�m��

=
1

�2��2�N/2 	 dN� exp�i�n − i�m −
1

2�2 �
p=1

N

�p
2


= exp�− 2�2/2� ,

tc. In the limit as �→�, this reduces to

exp�i�n�� → 0,

exp�i� − i� �� → 
 ,
n n nm

. Micro/Nanolith. MEMS MOEMS 043003-1

m: http://nanolithography.spiedigitallibrary.org/ on 05/27/2014 Terms of Use
�exp�i�n + i�m�� → 0,

etc., which matches the results for the expectation values
obtained using the uniform distribution
Puniform��1 ,�2 , . . . ,�N�=1 / �2��N with each �n, in this case
ranging only from 0 to 2�.
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