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Abstract

Standard discussions of Goldstone’s theorem based on a symmetry of the action assume constant

fields and global transformations, i.e., transformations which are independent of spacetime coor-

dinates. By allowing for arbitrary field distributions in a general representation of the symmetry

we derive a generalization of the standard Goldstone’s theorem. When applied to gauge bosons

coupled to scalars with a spontaneously broken symmetry the generalized theorem automatically

imposes the Higgs mechanism, i.e., if the expectation value of the scalar field is nonzero then the

gauge bosons must be massive. The other aspect of the Higgs mechanism, the disappearance of

the “would be”Goldstone boson, follows directly from the generalized symmetry condition itself.

We also use our generalized Goldstone’s theorem to analyze the case of a system in which scale

and conformal symmetries are both spontaneously broken.

I. INTRODUCTION

Symmetry, symmetry breaking, Goldstone bosons and the Higgs mechanism play a very

important role in modern physics. (See for example [1][2][3][4][5]) Here we present a more

general approach to these ideas which explores the consequences of Goldstone’s theorem for

space-time and gauge symmetries and shows that the Higgs mechanism is not as “mysterious”

or “miraculous” as it is sometimes presented to be. We also resolve some old questions

regarding the the breaking of scale and conformal symmetry.

We consider the physical consequences of actions which have a symmetry or a set of

symmetries. Precisely what we mean by this is discussed in detail below. For concreteness

we work out the details for the classical action of a set of fields Φa, which we denote by S [Φ] .

To treat the quantum theory one computes the functional integral over all field configurations

(in a given function space) of exp (iS [Φ] + iJ · Φ) to obtain the generating functional Z [J ] .

Here the dot indicates the appropriate inner product over spacetime position, spacetime

indices and internal indices. The effective action Γ [Φ] , [1][2][3][4] defined via a Legendre

transformation of ln (Z [J ]), is the analog of S [Φ] but includes all quantum effects. That

is, whereas δS/δΦ (x) = 0 is the equation of motion for the classical field configuration

ΦC (x), δΓ/δΦ (x) = 0 is the equation of motion for the vacuum expectation value of the

field 〈Φ (x)〉 . Indeed the nth functional derivative of Γ [Φ] is the n-point quantum Greens

function. Generally, but certainly not always, Γ [Φ] will have the same symmetry properties
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as S [Φ]. To lowest or “tree” order the two actions coincide and in a sense Γ [Φ] can be

thought of as just a more complicated functional of Φ than S [Φ] . Hence our approach

applies to both S [Φ] and to Γ [Φ] for any given symmetry that holds for either functional.

We will generally assume that Φ is classically a commuting field or quantum mechanically

a bosonic field, but the same approach can be applied to classical Grassmann fields or to

quantum Fermionic fields yielding similar results with, of course, the requisite care in factor

ordering.

II. GENERAL SYMMETRY CONDITION

Consider a Lagrangian density L (Φ (x) , ∂Φ (x)) which depends on a set of fields Φa and

their first derivatives, ∂µΦa. Here a can be an internal index, a spacetime index or a combi-

nation of the two. The action is defined by

S [Φ] =

∫
dDxL (Φ (x) , ∂Φ (x)) (1)

and is taken to be invariant, i.e., S [Φ] = S [Φ′] , under a continuous set of transformations

of the fields given by

Φa (x)→ Φ′a (x) = F (Φ (x) , ∂Φ (x) , ..., x) (2)

= Φa (x) + ∆a (Φ (x) , ∂Φ (x) , ..., x) + · · ·

where the last expression is the infinitesimal form of the transformation, i.e, ∆a � 1. In

terms of the Lagrangian this symmetry has the form∫
dDxL (Φ (x) , ∂Φ (x)) =

∫
dDxL (Φ′ (x) , ∂Φ′ (x)) (3)

=

∫
dDxL (F (Φ (x) , ∂Φ (x) , ..., x) , ∂F (Φ (x) , ∂Φ (x) , ..., x))

We have assumed the change in Φa may depend locally on Φa and possibly explicitly on x

as well. For ease of notation we will abbreviate the Φ dependence of L, F and ∆ as

L (Φ (x) , ∂Φ (x)) ≡ L [Φ (x)] (4)

Fa (Φ (x) , ∂Φ (x) , ..., x) ≡ Fa [Φ (x) , x]

∆a (Φ (x) , ∂Φ (x) , ..., x) ≡ ∆a [Φ (x) , x]
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Infinitesimally a symmetry is simply the statement that the gradient of the action at any

point in function space is perpendicular to the direction defined by ∆a, i.e,∫
dDx

δS [Φ]

δΦa (x)
∆a [Φ (x) , x] = 0 (5)

The symmetry condition expressed in (5) is not an equation for Φ and in fact must hold

for all values of Φ. Thus all the functional derivatives of (5) with repect to Φ must vanish.

This condition effectively assumes the equivalent of analyticity of S [Φ] in function space. If

the same idea is applied to Γ [Φ] , the effective action computed by evaluating a functional

integral, then the vanishing of the various functional derivatives yields the generalized Ward-

Takahashi identities.

Taking one functional derivative of the symmetry condition (5) and evaluating it at the

equation of motion yields, as shown below, what can be seen as a generalized Goldstone

theorem ∫
dDx′

(
δ2S

δΦa (x) δΦb (x′)
∆a [Φ (x′) , x′]

)
ΦC

= 0 (6)

Substituting (1) and assuming locality of ∆a as expressed in (4) yields the following after

some simple manipulations

[
−∂α

(
∂2L

∂(∂αΦa)∂(∂µΦb)
∂µ∆b

)
− ∂α

(
∂2L

∂(∂αΦa)∂Φb
∆b

)
+ ∂2L
∂Φa∂(∂µΦb)

∂µ∆b + ∂2L
∂Φa∂Φb

∆b

]
ΦC

= 0
(7)

The remainder of the paper explores some of the consequences of this equation.

III. GOLDSTONE’S THEOREM

There are nominally two consequences of Goldstone’s theorem. The primary one is the

requirement for the existence of some number of massless bosons, called Goldstone bosons,

in the theory if the symmetry is spontaneously broken. The secondary condition is that the

Goldstone bosons decouple from the other degrees of freedom in the limit of zero momentum.

Symmetry breaking is based on the additive nature of (2) which indicates that a given

field configuration is not invariant under the symmetry transformation. In particular it is

often the case that ∆a ≡ 0 if and only if Φa = 0 and so for any nonzero field configuration

the transformation in (2) is inhomogeneous and the symmetry is spontaneously broken, i.e.,
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a nonzero field configuration is not invariant under the symmetry transformation whereas

the zero field configuration is invariant. This is discussed very clearly in [5]

We begin by reviewing the standard approach to Goldstones theorem as given for example

in the book by Peskin and Schroeder [1] This form of the derivation proceeds by considering

constant fields and field transformations for Lagrangians of the form

L = T (∂Φ)− V (Φ) (8)

Specializing to constant fields the equations of motion reduce to

∂V

∂Φa

∣∣∣∣
ΦC

= 0 (9)

which shows that the constant field ΦC is an extremum, commonly a minimum, of V. Ex-

panding V about this miminum yields

V (Φ) = V (ΦC) +
1

2
(Φ− ΦC)a (Φ− ΦC)b

(
∂2V

∂Φa∂Φb

)
ΦC

+ . . . (10)

The coeffi cient of the quadratic term is a symmetric matrix, known as the mass matrix,

whose eigenvalues are the square of the masses of the various fields obtained from (Φ− ΦC)a

after applying the linear transformation which diagonalizes the matrix. Since the symmetry

condition is taken to hold for arbitrary field configurations it holds as well for constant fields

in which case the potential V itself is invariant, i.e.,

V (Φ) = V (Φ + ∆) (11)

which implies
∂V

∂Φa

∆a (Φ) = 0 (12)

Now differentiate with respect to Φb and evaluate the result at ΦC to obtain(
∂2V

∂Φb∂Φa

)
ΦC

∆a (ΦC) = 0 (13)

This shows that the mass matrix has a zero eigenvalue for each linearly independent sym-

metry vector ∆ (ΦC) satisfying the above equation. The number of linearly independent

nonzero vectors ∆ (ΦC) is referred to as the number of broken generators, NB, and hence

there is one Goldstone boson for each broken generator. Our more general result (6) or

equivalently (7) yields this same condition as well if we assume Lagrangians of the form
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given in (8) and set ΦC to a constant field in equation (6) or (7) which can now clearly be

seen as a generalization of the above equation.

The decoupling follows from considering a change of variables which diagonalizes the

mass matrix. This can be done by writing

Φa = Φa

(
ξi, ρj

)
(14)

where i = 1, ..., NB and j = 1, ..., N − NB with ξi and ρj defined implicitly by choosing

Φa

(
ξi, ρj

)
so that ∂2V (Φ(ξ,ρ))

∂ξi∂ξi′
∂2V (Φ(ξ,ρ))
∂ξi∂ρj′

∂2V (Φ(ξ,ρ))
∂ρj∂ξi′

∂2V (Φ(ξ,ρ))
∂ρj∂ρj′


ΦC

=

 ∂Φa
∂ξi

∂2V
∂Φa∂Φb

∂Φb
∂ξi′

∂Φa
∂ξi

∂2V
∂Φa∂Φb

∂Φb
∂ρj′

∂Φa
∂ρj

∂2V
∂Φa∂Φb

∂Φb
∂ξi′

∂Φa
∂ρj

∂2V
∂Φa∂Φb

∂Φb
∂ρj′


ΦC

(15)

=

 0 0

0 − (mj (ΦC))2 δjj′


where there is no sum on j in the last matrix. The ξi are the Goldstone bosons (the ξξ sector

of the mass matrix vanishes by definition) and the ρi are the remaining bosons, i.e., at any

given value of ΦC the ξi are tangent to the symmetry directions at that point in function

space whereas the ρj are perpendicular to these directions. The symmetry transformation

(5) becomes ξi → ξi + δξi, ρj → ρj for Φa → Φa + ∆a (Φ) or equivalently

∆a (Φ) =
∂Φa

∂ξi
δξi (16)

Note that δξi must be constant for ∆ (Φ) constant. The symmetry condition (5) in terms

of the new variables yields

0 =
δL [Φ (ξ, ρ)]

δξi
δξi

=
∂L [Φ (ξ, ρ)]

∂ξi
δξi (17)

=
∂L′ (ξ, ρ)

∂ξi
δξi

where the ∂µδξi term vanishes since δξi must be constant for the symmetry to hold. Hence

∂L′/∂ξi = 0 and L′ can depend only on ∂µξi. Since ∂µξi vanishes in the limit of zero

momentum the Goldstone bosons vanish or decouple in this limit
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IV. AUTOMATIC HIGGS

Consider a U (1) gauge model in which a complex scalar field φ = φ1 + iφ2 with φi real,

i = 1, 2, is coupled in a locally gauge invariant way to a U (1) gauge field, Aµ. In this case

Φa → (Aµ, φi) (18)

∆a →
(
∂µθ, εijφjθ

)
with θ an arbitrary infinitesimal scalar function of position. Note we are working in units

with the electric charge e = 1 . Take the Lagrangian to have the form

L = LA (∂µAν) + Lφ (∂µφi, φi) + LAφ (Aµ, ∂µφi, φi) (19)

= −1

4
FµνF

µν + ∂µφi∂
µφi − V (φiφi) + LAφ (Aµ, ∂µφi, φi)

where Fµν = ∂µAν − ∂νAµ so that LA is invariant under gauge transformations and Lφ is
invariant under φ→ eiθφ for θ constant. The extra term LAφ is explicitly included to “boost”
the symmetry from a global one to a local one. It allows for terms of the form Aφ∂φ and

AAφφ which are the lowest order terms with saturated indices. That is for arbitrary, i.e.,

not necessarilly infinitesimal θ the full Lagrangian is required to be symmetric under

Aµ → Aµ + ∂µθ (20)

φ → eiθφ

We explicitly assume the only ∂φ∂φ term in L is the standard kinetic energy term from Lφ.
For arbitrary infinitesimal functions θ local gauge invariance yields the following symme-

try condition for the action

0 =

∫
dDx

δS

δAβ
∂βθ +

∫
dDx

δS

δφj
εjkφkθ (21)

Note that L is locally gauge invariant and not just S thus the remaining
∫
dDx integration in

the above equation can be dropped. The generalized symmetry equation yields two distinct

equations since we can take derivatives with respect to A and φ
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0 =

(∫
dDx

δ2S

δAαδAβ
∂βθ +

∫
dDx

δ2S

δAαδφj
εjkφkθ

)
ΦC

(22)

= −∂ν
(

∂2L
∂ (∂νAα) ∂ (∂µAβ)

∂µ∂βθ

)
+

∂2L
∂Aα∂ (∂µAβ)

∂µ∂βθ

−∂ν
(

∂2L
∂ (∂νAα) ∂Aβ

∂βθ

)
+

∂2L
∂Aα∂Aβ

∂βθ

−∂ν

(
∂2L

∂ (∂νAα) ∂
(
∂µφj

)∂µεjkφkθ
)

+
∂2L

∂Aα∂
(
∂µφj

)∂µεjkφkθ
−∂ν

(
∂2L

∂ (∂νAα) ∂φj
εjkφkθ

)
+

∂2L
∂Aα∂φj

εjkφkθ

and

0 =

(∫
dDx

δ2S

δφiδAβ
∂βθ +

∫
dDx

δ2S

δφiδφj
εjkφkθ

)
ΦC

(23)

= −∂ν
(

∂2L
∂ (∂νφi) ∂ (∂µAβ)

∂µ∂βθ

)
+

∂2L
∂φi∂ (∂µAβ)

∂µ∂βθ

−∂ν
(

∂2L
∂ (∂νφi) ∂Aβ

∂βθ

)
+

∂2L
∂φi∂Aβ

∂βθ

−∂ν

(
∂2L

∂ (∂νφi) ∂
(
∂µφj

)εjk∂µ (φkθ)

)
+

∂2L
∂φi∂

(
∂βφj

)εjk∂β (φkθ)

−∂ν
(

∂2L
∂ (∂νφi) ∂φj

εjkφkθ

)
+

∂2L
∂φi∂φj

εjkφkθ

To simplify notation in both equations we have implicitly assumed that the results have

been evaluated at a solution to the equations of motion.

In (22) the first term vanishes identically, the second and third terms vanish because we

have not allowed for any derivative coupling of the gauge fields. The fifth term and seventh

terms vanish since there are no φ∂A or ∂A∂φ terms. In (23) the first and second terms

vanish. Using the fact that ∂µφi∂
µφi = gµνδij∂µφi∂νφj is the only term quadratic in the

derivatives of φ and expanding out all the derivatives of product terms we obtain

0 =

(
∂2L

∂Aα∂Aβ
+

∂2L
∂Aα∂

(
∂βφj

)εjkφk
)
∂βθ (24)

+

(
∂2L

∂Aα∂φj
εjkφk +

∂2L
∂Aα∂

(
∂βφj

)εjk∂βφk
)
θ
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and

0 = −
(

∂2L
∂ (∂νφi) ∂Aβ

+ 2gνβεikφk

)
∂ν∂βθ (25)

+

 ∂2L
∂φi∂Aβ

− ∂ν
(

∂2L
∂(∂νφi)∂Aβ

)
− 4εik∂

βφk

+

(
∂2L

∂φi∂(∂βφj)
− ∂2L

∂(∂βφi)∂φj

)
εjkφk

 ∂βθ

+

 −2εik∂
2φk +

(
∂2L

∂φi∂(∂βφj)
− ∂2L

∂(∂βφi)∂φj

)
εjk∂βφk

+
(

∂2L
∂φi∂φj

− ∂ν
(

∂2L
∂(∂νφi)∂φj

))
εjkφk

 θ

Since θ is an arbitrary function coeffi cients of θ, ∂θ, and ∂∂θ must vanish independently

which yields the following

0 =
∂2L

∂Aα∂Aβ
+

∂2L
∂Aα∂

(
∂βφj

)εjkφk (26)

0 =
∂2L

∂Aα∂φj
εjkφk +

∂2L
∂Aα∂

(
∂βφj

)εjk∂βφk (27)

0 =
∂2L

∂ (∂νφi) ∂Aβ
+ 2gνβεikφk (28)

0 =

∂2L
∂φi∂Aβ

− ∂ν
(

∂2L
∂(∂νφi)∂Aβ

)
− 4εik∂βφk

+

(
∂2L

∂φi∂(∂βφj)
− ∂2L

∂(∂βφi)∂φj

)
εjkφk

(29)

0 =

−2εik∂
2φk

+

(
∂2L

∂φi∂(∂βφj)
− ∂2L

∂(∂βφi)∂φj

)
εjk∂βφk

+
(

∂2L
∂φi∂φj

− ∂ν
(

∂2L
∂(∂νφi)∂φj

))
εjkφk

(30)

For a constant solution to the φ equations of motion,i.e., φ = constant but Aµ unspecified,

these equations reduce to

0 =
∂2L

∂Aα∂Aβ
+

∂2L
∂Aα∂

(
∂βφj

)εjkφk (31)

0 =
∂2L

∂Aα∂φj
εjkφk (32)

0 =
∂2L

∂ (∂νφi) ∂Aβ
+ 2gνβεikφk (33)

0 =

∂2L
∂φi∂Aβ

− ∂ν
(

∂2L
∂(∂νφi)∂Aβ

)
+

(
∂2L

∂φi∂(∂βφj)
− ∂2L

∂(∂βφi)∂φj

)
εjkφk

(34)
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0 =

(
∂2L

∂φi∂φj
− ∂ν

(
∂2L

∂ (∂νφi) ∂φj

))
εjkφk (35)

Substituting (33) into (31) yields

∂2L
∂Aα∂Aβ

= 2gαβφiφi

and so for constant nonzero φi solutions to the equation, the gauge bosons must have

a nonzero mass equal to
√

2φiφi. The sign of the gauge boson mass is correct since

the Lagrangian for massive vector bosons, the Proca Lagrangian, has the form −1
4
F 2 +

1
2
M2A2.Hence the first part of the Higgs mechanism, the gauge bosons acquire a mass, is

automatic and can be seen to be simply a direct requirement of the generalized Goldstone’s

theorem, equation (6) or equivalently (7).

Applying εilφl to (34) equation and using (32) yields

∂ν

(
∂2L

∂ (∂νφi) ∂Aβ

)
εilφl = 0 (36)

And applying εilφl to (35) yields

εilφl
∂2L

∂φi∂φj
εjkφk = εilφl∂ν

(
∂2L

∂ (∂νφi) ∂φj

)
εjkφk (37)

These two equations along with (32) are automatically satisfied by taking

LAφ = 2Aµεijφi∂
µφj + φiφiAµA

µ (38)

which is the standard form.

The second part of the Higgs mechanism, the disappearance of the “would-be”Goldstone

boson, follows from the symmetry condition (21) itself which after changing variables to ξ

and ρ using φ = ρeiξ reads

0 =
∂L

∂ (∂µAν)
∂µ∂νθ +

(
∂L
∂Aν

+
∂L

∂ (∂νξ)

)
∂νθ +

(
∂L
∂ξ

)
θ (39)

Again, since θ is an arbitrary function, each term must vanish separately. The first term

vanishes due to the gauge invariance LA since ∂L/∂ (∂µAν) = ∂LA/∂ (∂µAν). The last term

demands ∂L/∂ξ = 0 and so L may depend only on derivatives of ξ, i.e., L (A, ρ, ∂ρ, ξ, ∂ξ)→
L (A, ρ, ∂ρ, ∂ξ). If we make the change of variables Aµ → Bµ = Aµ−∂µξ, the first and third
terms still vanish. the first automatically since for LA alone this is just a gauge tranformation
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and the last still yields the condition ∂L/∂ξ = 0. But now the middle term can be written

as

0 =

(
∂L (B, ρ, ∂ρ, ∂ξ)

∂Bν

)
∂Bν

∂Aµ
+

(
∂L (B, ρ, ∂ρ, ∂ξ)

∂Bν

)
∂Bν

∂ (∂µξ)
(40)

+

(
∂L (B, ρ, ∂ρ, ∂ξ)

∂ (∂νξ)

)
=

(
∂L (B, ρ, ∂ρ, ∂ξ)

∂Bν

)
δµν +

(
∂L (B, ρ, ∂ρ, ∂ξ)

∂Bν

)
(−δµν )

+

(
∂L (B, ρ, ∂ρ, ∂ξ)

∂ (∂νξ)

)
=

∂L (B, ρ, ∂ρ, ∂ξ)

∂ (∂νξ)

and hence L does not depend on ∂ξ and so the “would-be”Goldstone boson ξ has completely
vanished from the model. Effectively it has become the longitudinal component of a now

massive gauge boson.

V. SCALE AND CONFORMAL SYMMETRY BREAKING

It has been noted in the literature, [4], see also[6], that in theories with spontaneously

broken scale and conformal invariance, although five symmetries are broken, only one Gold-

stone boson appears. A similar thing occurs for broken Lorentz invariance in a class of

three-dimensional gauge theories as discussed in [7]. In this section we use our more general

treatment of Goldstone’s theorem to study this question. In particular, we see that our

equation predicts only one Goldstone mode, but also imposes four other conditions, not

having to do with particle masses, that represent the extra information contained in the

spontaneous breakdown of conformal symmetry.

We have in mind a model of the kind considered by Coleman, which contains a scalar

and a fermion field, and another scalar, the dilaton, whose role is to implement the broken

symmetry. Since we do not consider fermions in this paper, we shall omit them here. Also,

we note that the extension of the following discussion to include more then one scalar (but

still only one dilaton) is straightforward, but to keep our notation simple we do not put

them in explicitly.

Here φi will be a doublet: φi =

 φ
σ

, where φ is the ordinary scalar field and σ is the
11



dilaton. Under dilations, they transform as

δφ = φ+ xµ∂µφ (41)

and

δσ =
1

f
+ xµ∂µσ (42)

where f is a scale characterizing the symmetry breaking. Under special conformal transfor-

mations, we have:

δλφ = (2xλxρ − gλρx2)∂ρφ+ 2xλφ

δλσ = (2xλxρ − gλρx2)∂ρσ +
2xλ

f
. (43)

In what follows, we shall assume that translation invariance is not broken. Hence φ and

σ must be constants. However, one sees that the ∆’s will not be constants. We have, in

fact,

δφ = φ , δσ =
1

f
(dilations) (44)

but

δλφ = 2xλφ , δλσ =
2xλ

f
(conformal transfs.) . (45)

Noting further that the spacetime derivatives of the Lagrangian density L or of its deriv-
atives with respect to the fields will vanish, we obtain from (7), ∂2L

∂φ2
∂2L
∂φ∂σ

∂2L
∂σ∂φ

∂2L
∂σ2

 φ
1/f

 = 0 (dilations) (46)

andxλ
 ∂2L

∂φ2
∂2L
∂φ∂σ

∂2L
∂σ∂φ

∂2L
∂σ2

+

 0 ∂2L
∂φ∂(∂λσ)

− ∂2L
∂σ∂(∂λφ)

∂2L
∂σ∂(∂λφ)

− ∂2L
∂φ∂(∂λσ)

0

 φ
1/f

 = 0 (47)

(conformal

transfs.)

In the second equation, the two terms must separately vanish, because the first is propor-

tional to the variable xλ and the second is not. But the first term encodes exactly the same

information as does equation (46). This is the origin of the fact that dilations and special
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conformal transformations give rise to the same Goldstone boson. There is, however, the

second term in (47), which provides an additional set of four constraints:

∂2L
∂σ∂(∂λφ)

=
∂2L

∂φ∂(∂λσ)
. (48)

This is, in principle, the “extra”information about the Lagrangian (or the effective action,

when quantum corrections are considered) that follows from spontaneously broken conformal

symmetry.

Let us see how this works at tree level in the specific model considered by Coleman. The

Lagrange density is

L =
1

2
∂µφ∂

µφ+
1

2f 2
∂µ(efσ) ∂µ(efσ)− µ2

2
φ2e2fσ − λ

4!
φ4. (49)

The equations (46) and (47) imply

 1 + λ
2µ2
φ2e−2fσ 2fφ

2fφ 2f2φ2

 φ
1/f

 = 0 , (50)

which requires φ = 0 and identifies

 0

1/f

 (i.e. the σ particle) as the Goldstone mode. The
extra information furnished in eq. (47) is trivial in this case, since the relevant terms were

set to zero from the beginning.
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