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We prove that the phase shift caused by a z shift of a grating, or in general any scattering/refracting/diffracting
structure, is proportional to the cosine and not 1/cosine. This is done both from the point of view of the "physical
optics approximation" which uses scalar diffraction and from the point of view of a full solution to Maxwells Equations.
In both cases we work in 2D which is suffi cient to show the desired result while signficantly simplifying the analysis.
It should be noted that for the encoder, the grating periodicity will only be about twice the wavelength which means
the "physical optics approximation", which Goodman uses throughout his book on Fourier Optics, is NOT valid. But
the fact that the phase shift is proportional to the cosine is totally independent of the ratio of the wavelength to the
grating periodicity. This the reason for showing that exactly the same cosine phase shift occurs in the "physical optics
approximation" and in the full Maxwell solution.

I. GENERAL SOLUTIONS

General solutions to the Helmholtz equation for monochromatic light(
∂2x + ∂2z + k2

)
φ (x, z) = 0

which are propagating generically in the +z direction are given by

φ (x, z) =

∫
dβφ̃ (β) exp [iβx+ iγ (β) z]

where

γ (β) =
√
k2 − β2

with k = 2π/λ with λ the wavelength. β is the spatial frequency in the x direction, γ (β) is the spatial frequency in
the z direction and

φ̃ (β) =
1

2π

∫
dxφ (x, z = 0) exp [−iβx]

is the Fourier transform of φ (x, z = 0) .
To get a general solution propagating generically in the −z direction replace exp [+iγ (β) z] with exp [−iγ (β) z] .

Given the forms of the upward (+z) propagating and downward (−z) propagating fields we have the following result.
The Fourier transform of an upwardly (+z) propagating field at z 6= 0 is given by

1

2π

∫
dxφ (x, z) exp [−iβx] = exp [iγ (β) z] φ̃ (β)

That is, the Fourier transform of an upwardly propagating field picks up the phase factor exp [iγ (β) z] relative to the
z = 0 Fourier transform of the field, φ̃ (β) . For z positive, γ (β) z is positive and for z negative, γ (β) z is negative. For
a downward propagating field the phase factor the Fourier transform picks up relative to the z = 0 Fourier transform
of the field is exp [−iγ (β) z] and for z positive −γ (β) z is negative and for z negative −γ (β) z is positive. Hence in
both cases the phase increases in the direction of propagation and decreases in the direction opposite to the direction
of propagation.
NOTE: As has been pointed out by many people including the late Doug Goodman (IBM Optics Expert not the

Fourier Optics Goodman), one should always work with β and γ (β) and only in the very end replace these variables
with their angle equivalents

β = k sin (θ)

γ (β) =
√
k2 − β2 = k

√
1− sin (θ)

2
= k cos (θ)

where θ = the angle measured from the z axis.
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II DIFFRACTION FROM A GRATING

II. DIFFRACTION FROM A GRATING

Consider a grating with period P where P � λ and the depth D of the grating grooves as a function of x, h (x) ,
satisfies D = max [h (x)] − min [h (x)] � λ. The reason for choosing P � λ and D � λ is that, in this regime, for
θ not too large, we can use the physical optics approximation for the effect that the grating has on an incident field
in reflection which is simply to multiply the incident field, φin (x, z) , by the phase factor exp [i2kh (x)] to get the
outgoing or reflected field φout (x, z) , that is,

φout (x, z) = exp [i2kh (x)]φin (x, z)

Here φin (x, z) is incident on the grating from below and so z corresponds to a plane infinitesimally below the grating,
i.e, z = min [h (x)] .
NOTE: The change in phase caused by shifting the grating is completely independent of the relative

sizes of P, λ and D. If we did not assume P � λ and D � λ then we would have to solve Maxwells
equations with appropriate boundary conditions and we could not treat the effect of the grating as
simply multiplying the incident field by the phase factor exp [i2kh (x)]. The same phase effect will
be derived below as an exact solution to Maxwell’s equations in 2D using the scattering matrix. It
is only in the regime where P � λ and D � λ that the Maxwell equation solution reduces to just
multiplication by the phase factor exp [i2kh (x)] . Any time you treat a grating or any other optical
component by simply multiplying by a phase factor you are by definition working in the regime where
the surface is slowly varying compare to the wavelength and boundary conditions can be ignored. This
is known as the "physical optics approximation". All of Goodman’s Fourier Optics book works in the
physical optics approximation.
Here’s a quote from Goodmans book on Fourier Optics (last paragraph of section 3.2)

Since h (x) represents a grating, h (x) is periodic in x, i.e.,

h (x) = h (x+ P ) ∀x

Hence exp [i2kh (x)] is also periodic with period P as well and can be expressed as a Fourier series

exp [i2kh (x)] =

∫
dβa (β) exp [iβx]

∑
n

δ

(
β − n2π

P

)
=
∑
n

a (n2π/P ) exp [in2π/Px]

≡
∑
n

an exp [inβGx]

Here δ (· · · ) is the Dirac delta function and

a (β) =
1

P

∫ +P/2

−P/2
dx exp [i2kh (x)− iβx]
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V SHIFTED GRATING

NOTE: The important fact in the derivation below is that h (x) is periodic with period P so that exp [i2kh (x)] is
also periodic with period P. We could simply say the effect of the grating on φin (x, z) is to multiply it by a phase
factor exp [iψ (x)] where ψ (x) is periodic with period P. Writing ψ (x) = 2kh (x) just relates ψ (x) to the shape and
depth of the grating grooves h (x) . This is not necessary, only the periodicity counts in the derivation below.

III. INCIDENT FIELD

Let φ̃ (β) → φ̃in (β − β0) with φ̃in (β − β0) being tightly peaked around β0 so that φ̃in (β − β0) drops rapidly to
zero for |β − β0| < 2π/P ≡ βG, in which case the width of φin (x, z) in the x direction is much larger than P so that
it covers many periods of the grating. In other words the incident beam is very collimated.

IV. UNSHIFTED GRATING

Consider first the case where the grating is just infinitesimally above the z = 0 plane which we will treat as the
unshifted case.
As above, define

βG =
2π

P

and set

β0 = −βG

so that φin (x, z) is a beam propagating in the plus z direction and tilted to the left of the +z axis by angle θin where
βG = k sin (θin) . This angle corresponds to the angle the reflected/diffracted +1 order has going toward the corner
cube/retroreflector after the beam at normal incidence reflects/diffracts from the grating. This is exactly the angle
of the beam returning to the grating after being reflected from the corner cube/retroreflector.
Using the above results the complex amplitude of the 0 order beam diffracted, in reflection, from the grating is

given by

φ̃out (0) =

∫
dx

2π
φout (x, 0)

=

∫
dx

2π
exp [i2kh (x)]φin (x, 0)

=

∫
dx

2π

∑
n

an exp [inβGx]

∫
dβφ̃in (β + βG) exp [iβx]

=
∑
n

an

∫
dβφ̃in (β + βG)

∫
dx

2π
exp [i (β + nβG)x]

=
∑
n

an

∫
dβφ̃in (β + βG) δ (β + nβG)

=
∑
n

anφ̃in (−nβG + βG)

= a1φ̃in (0)

where the last line follows from the fact that φ̃in (β − β0) = φ̃ (β + βG) is narrowly peaked around β0 = −βG so that
φ̃in ((1− n)βG) is nonzero only for n = 1.

V. SHIFTED GRATING

Now consider what happens if the grating is shifted along the z axis a distance z > 0.
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V SHIFTED GRATING

First evaluate φin (x, z) again by first letting β0 be arbitrary and at the end set it to −βG as in the unshifted case,

φin (x, z) =

∫
dβφ̃in (β − β0) exp [iβx+ iγ (β) z]

Let β′ = β − β0

φin (x, z) =

∫
dβ′φ̃in (β′) exp [i (β0 + β′)x+ iγ (β0 + β′) z]

Drop the prime on the dummy integration variable β′

φin (x, z) =

∫
dβφ̃in (β) exp [i (β0 + β)x+ iγ (β0 + β) z]

But again, due to the narrowness of the function φ̃in (β) only small values of β − β0 will contribute to the integral,
hence we can Taylor expand γ (β0 + β) as

γ (β0 + β′) = γ0 + γ′0β +
1

2
γ′′0β

2 + · · ·

where

γ0 = γ (β0)

γ′0 = ∂βγ (β)|β=β0
γ′′0 = ∂2βγ (β)

∣∣
β=β0

We now show that the term γ′0β causes the beam to shift position along x as it propagates in z. The term 1/2γ′′0β
2

and higher order terms will cause the beam to spread diffractively as it propagates. These terms are not needed to
show how the grating affects the phase and indeed diffraction spreading in any practical case should be negligible.
First compute φin (x, z) keeping just γ (β0 + β) = γ0 + γ′0β

φin (x, z) = exp [iβ0x+ iγ0z]

∫
dβφ̃in (β) exp [i (x+ γ′0z)β]

The dependence on x+ γ′0z indicates the beam shifts in x with propagation in z.
Consider the position of the "center" of the beam by setting

x = −γ′0z

We have

φin (x = −γ′0z, z) = exp [i (−β0γ′0 + γ0) z]

∫
dβφ̃in (β)

= exp [i (−β0γ′0 + γ0) z]φin (0, 0)

and so the phase picked up by the beam "center" φin (0, 0) as it propagates to position x = −γ′0z and z is

(−β0γ′0 + γ0) z = k
z

cos (θin)

after using γ (β) =
√
k2 − β2. This is the expected result for the propagation of the beam.
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VI FULL MAXWELL SOLUTION

Now, compute the effect of diffraction from the shifted grating on φin (x, z) , again setting β0 = −βG

φ̃out (β = 0 at shifted z position) =

∫
dx

2π
φout (x, z)

=

∫
dx

2π
exp [i2kh (x)]φin (x, z)

= exp [iγ0z]

∫
dx

2π
exp [i2kh (x)− iβGx]

∫
dβφ̃in (β) exp [i (x+ γ′0z)β]

= exp [iγ0z]

∫
dx

2π
exp [i2kh (x− γ′0z)− iβG (x− γ′0z)]

∫
dβφ̃in (β) exp [iβx]

= exp [iγ0z]

∫
dx

2π

∑
n

an exp [inβG (x− γ′0z)− iβG (x− γ′0z)]
∫
dβφ̃in (β) exp [iβx]

= exp [iβGγ
′
0z + iγ0z]

∑
n

an exp [−inβGγ′0z]
∫
dβφ̃in (β)

∫
dx

2π
exp [i (β + (n− 1)βG)x]

= exp [iβGγ
′
0z + iγ0z]

∑
n

an exp [−inβGγ′0z]
∫
dβφ̃in (β) δ (β − (n− 1)βG)

= exp [iβGγ
′
0z + iγ0z]

∑
n

an exp [−inβGγ′0z] φ̃in ((n− 1)βG)

= exp [iβGγ
′
0z − iβGγ′0z + iγ0z] a1φ̃in (0)

= exp [iγ0z] a1φ̃in (0)

= exp [ik cos [θin] z] a1φ̃in (0)

Here we have used the fact that, again due to the narrowness of φ̃in (β) around β = 0, we have only n = 1 contributes
to the sum.
Conclusion: Comparing the unshifted result a1φ̃in (0) for the diffracted beam to the shifted result

exp [ik cos [θ] z] a1φ̃in (0) for the diffracted beam we see that the effect of shifting the grating in z is to multiply
the unshifted result by the phase factor exp [ik cos [θ] z] .
One final step. We should propagate the field reflected/diffracted from the grating back down to the z = 0 plane.

This amounts simply to multiplying the reflected/diffracted field by exp [ikz] and so we have finally

exp [ikz + ik cos [θin] z]

VI. FULL MAXWELL SOLUTION

In 2D with coordinates x and z if we take the electric field ~E to be purely polarized in the y direction, ~E = Ey ŷ
then we can set

φ (x, z) = Ey (x, z)

and Maxwell’s equations, for monochromatic light, reduce to the Helmholtz equation(
∂2x + ∂2y + k2n (x, z)

2
)
φ (x, z) = 0

where k = 2π/λ with λ the wavelength in vacuum and n (x, z) is the index of refraction as a function of position x
and z.
Consider the case where

n (x, z)
2

= 1 + ∆n (x, z)
2

with

∆n (x, z)
2 6= 0 only for z < 0(

∂2x + ∂2y + k2
(

1 + ∆n (x, z)
2
))

φ (x, z) = 0

G. M. Gallatin 5 Date



A The Scattering Matrix VI FULL MAXWELL SOLUTION

So, in the half-space z > 0 the index of refraction is 1 everywhere and it only varies from 1 in the half space z < 0.
The function ∆n (x, z)

2 can represent any type of index distribution: a grating, a lens, a combination of gratings and
lenses, a "lump" of "stuff", whatever, that sits in the half space z < 0 and scatters/refracts/diffracts light. We will
refer to is as a "scattering structure".
Let

φ (x, z) = φin (x, z) + φout (x, z)

Take φin (x, z) to have the Fourier form

φin (x, z) =

∫
dβinφ̃in (βin) exp [iβinx− iγinz]

with

γin = γ (βin) =
√
k2 − β2in

NOTE: In this section we have taken the incident field to be propagating generically in the −z direction, thus the
outgoing or scattered field, for z > 0, will be propagating generically in the +z direction.
If φ̃in (β) is a specified function of β then φin (x, z) is a specified incoming or incident field propagating in the −z

direction and coming effectively from z =∞. From the specified form of φin (x, z) we have that φin (x, z) satisfies the
Helmholtz equation with ∆n (x, z)

2
= 0, (

∂2x + ∂2z + k2
)
φin (x, z) = 0

Substituting φ = φin + φout into the Helmholtz equation and using the above result for φin (x, z) the Helmholtz
equation becomes (

∂2x + ∂2y + k2
(

1 + ∆n (x, z)
2
))

φout (x, z) = −k2∆n (x, z)
2
φin (x, z)

This has the form of a "scattering equation". Light traveling generically in the −z with the specified amplitude
distribution φin (x, z) is incident on the "scattering structure" ∆n (x, z)

2 and φout (x, z) is the light distribution
generated by the "scattering structure" ∆n (x, z)

2
.

Since by definition ∆n (x, z ≥ 0) = 0 from the "scattering equation" above we have for z ≥ 0,(
∂2x + ∂2y + k2

)
φout (x, z ≥ 0) = 0

Given this result it follows that φout (x, z ≥ 0) can be written in the Fourier transform form

φout (x, z ≥ 0) =

∫
dβoutφ̃out (βout) exp [iβoutx+ iγoutz]

with

γout = γ (βout) =
√
k2 − β2out

A. The Scattering Matrix

The scattering matrix S (βout, βin) is defined as the matrix that, via matrix multiplication, converts the column
vector φ̃in (βin) into the column vector, φ̃out (βout) . Since here the values of βin and βout are continuous, matrix
multiplication takes the form of an integral rather than a sum, i.e.,

φ̃out (βout) =

∫
dβinS (βout, βin) φ̃in (βin)

Assume that by one means or another we have solved Maxwells equations for the scattering structure
to get the scattering matrix S (βout, βin).
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C Greens function → Scattering Matrix VI FULL MAXWELL SOLUTION

B. Shifting the Scattering Structure

Now shift the scattering structure, e.g., the grating, by −∆x in x and −∆z in z by letting

∆n (x, z)
2 → ∆n (x+ ∆x, z + ∆z)

2

But this is equivalent to leaving the scattering structure unshifted and shifting the incoming and outgoing fields
φin (x, z) and φout (x, z) by +∆x and +∆z. From the Fourier representations for φin (x, z) and φout (x, z) we have
the shifted values of φ̃in (βin) and φ̃out (βout) , call them φ̃shiftedin (βin) and φ̃shiftedout (βout) , are given by

φ̃shiftedin (βin) = exp [iβin∆x− iγ (βin) ∆z] φ̃in (βin)

φ̃shiftedout (βout) = exp [iβout∆x+ iγ (βout) ∆z] φ̃out (βout)

In the formula above for calculating φ̃out (βout) given the scattering matrix S (βout, βin) and φ̃in (βin) , multiply both
sides by

exp [iβout∆x+ iγ (βout) ∆z]

and multiply φ̃in (βin) by

1 = exp [−iβin∆x+ iγ (βin) ∆z] exp [iβin∆x− iγ (βin) ∆x]

to get

exp [iβout∆x+ iγ (βout) ∆z] φ̃out (βout) =

∫
dβin exp [iβout∆x+ iγ (βout) ∆z]S (βout, βin) exp [−iβin∆x+ iγ (βin) ∆z]

× exp [iβin∆x− iγ (βin) ∆x] φ̃in (βin)

or

φ̃shiftedout (βout) =

∫
dβin exp [iβout∆x+ iγ (βout) ∆z]S (βout, βin) exp [−iβin∆x+ iγ (βin) ∆z] φ̃shifttedin (βin)

From this it follows that the scattering matrix for the shifted scattering structure is given by

Sshifted (βout, βin) = exp [i (βout − βin) ∆x+ i (γ (βout) + iγ (βin) ∆z)]S (βout, βin)

Since

β = k sin (θ)

we have

γ (β) =
√
k2 − β2 = k cos (θ)

and see immediately that shifting scattering structure, i.e, the grating, by ∆z adds the phase

k (cos (θout) + cos (θin)) ∆z

which is a direct cosine dependence and not 1/cosine.

C. Greens function → Scattering Matrix

For completeness we now show how the Greens function relates to the scattering matrix.
For the Helmholtz equation above, the Greens function G (x, z, x′, z′) is the function that satisfies(

∂2x + ∂2y + k2
(

1 + ∆n (x, z)
2
))

G (x, z, x′, z′) = δ (x− x′) δ (z − z′)

where δ (· · · ) is a Dirac delta function. Effectively the Greens function is the inverse of the differential operator(
∂2x + ∂2y + k2

(
1 + ∆n (x, z)

2
))

. That is, when the differential operator acts on the Greens function it yields the

identity matrix which for continuous variables is a Dirac delta function.
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C Greens function → Scattering Matrix VI FULL MAXWELL SOLUTION

With the Greens function the solution for φout (x, z) is given by

φout (x, z) = −k2
∫
dx′dz′G (x, z, x′, z′) ∆n (x′, z′)

2
φin (x′, z′)

We are not going to solve explicitly for the Greens function. The explicit form is not necessary to show how
the scattering matrix is related to the Greens function. So, assume by one means or other we have solved for the
Greens function. Substitute the Fourier transform representations of φin (x, z) and φout (x, z) into the Greens function
solution for φout (x, z) for z ≥ 0 to get∫

dβoutφ̃out (βout) exp [iβoutx+ iγoutz]

= −k2
∫
dx′dz′G (x, z, x′, z′)

∫
dβinφ̃in (βin) exp [iβinx

′ − iγinz′]

=

∫
dβin

(
−k2

∫
dx′dz′G (x, z, x′, z′) exp [iβinx

′ − iγinz′]
)
φ̃in (βin)

Set

z = 0

and inverse Fourier transform both sides to get

φ̃out (βout) =

∫
dβin

(
−k2

∫
dx

2π
dx′dz′G (x, 0, x′, z′) exp [iβinx

′ − iβoutx− iγinz′]
)
φ̃in (βin)

Comparing this result with the definition of the scattering matrix above we have

S (βout, βin) = −k2
∫
dx

2π
dx′dz′G (x, 0, x′, z′) exp [iβinx

′ − iβoutx− iγinz′]

The Greens function for the shifted scattering structure is the shifted Greens function and when that is substituted
into the above formula for S (βout, βin) in terms of G (x, z, x′, z′) we get the same result for the shifted scattering
matrix as in the previous section.

D.
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