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Abstract

We show how the Fourier transform of a shape in any number of dimensions can be simplified
using Gauss’s law and evaluated explicitly for polygons in two dimensions, polyhedra three
dimensions, etc. We also show how this combination of Fourier and Gauss can be related
to numerous classical problems in physics and mathematics. Examples include Fraunhofer
diffraction patterns, Porods law, Hopfs Umlaufsatz, the isoperimetric inequality and Didos
problem. We also use this approach to provide an alternative derivation of Davis’s extension
of the Motzkin-Schoenberg formula to polygons in the complex plane.

1 Introduction

A shape can be defined mathematically in many ways. Here we consider defining it by a function
that has the value unity inside the shape and zero outside the shape. Only simply connected
orientable [1] shapes will be considered. The Fourier transform of a shape defined in this way has
interesting applications and connections to many areas of physics and mathematics. For example,
in physical optics the Fourier transform of the shape of an aperture or opening in an opaque screen
yields the Fraunhofer or far field diffraction pattern that is generated when light passes through the
aperture [2]. In X-ray scattering, the Fourier transform of a volumetric shape in three dimensions
reduces in the appropriate limit to Porods law [3]. From a probabilistic point of view the Fourier
transform of a shape properly normalized can be considered as the characteristic function or moment
generating function of the shape. Hence the Fourier transform of the shape is intimately related
to the moments of the shape and hence to the "shape from moments problem", which has been
studied recently for polygons by Golub, Milanfar and others [4] [5] and is related to the overall
problem of pattern recognition.
We will not discuss the details here, but the Fourier transform of an area bounded by a smooth

curve or a polygon in the plane can also be related to, Hopf’s Umlaufsatz [6], Stokes law [7], the
isoperimetric inequality [8] and Didos’ problem [9]. Hopf’s Umlaufsatz states that the tangent
vector to a smooth or piecewise smooth closed orientable simply connected curve in the plane
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rotates by ±2π as it goes completely around the curve. The +/− signs correspond to counterclock-
wise/clockwise rotation. This seemingly obvious geometrical fact is rather subtle to prove [6]. The
isoperimetric inequality is the statement that the shape which maximizes the area enclosed by a
curve of a fixed length is the circle [8]. The problem faced by Dido, Queen of Carthage, was to
determine what shape open curve of a given length encloses the maximum area when its endpoints
are connected by a straight line with an arbitrary length [9].
As an aside, the Fourier transform is just one of many techniques that are used for shape

discrimination [10]. This problem is both mathematically interesting, and, given the ubiquity of
digital data bases, technologically important. Here our specific interest is in the relation of the
Fourier transform of a shape to its moments and to the problems mentioned above. This is related
to, but generally different from, the issues concerned with using Fourier transforms explicitly for
shape discrimination in digital data bases and we will not discuss this aspect further.
The paper is organized as follows. In the Section 2, Gauss’s Law is used to rewrite the Fourier

transform of a D dimensional volume as the surface integral over the D− 1 surface of that volume.
In Section 2 we show how this suface integral yields the standard form for the area enclosed inside
a smooth curve. We evaluate this integral exactly for polygons in two dimensions which then
provides an explicit relation between the vertices of a polygon and its moments. We also show how
the combination of Fourier and Gauss provides an alternative derivation of a famous result of Davis
concerning the integral of an analytic function over a polygon in the complex plane [11] [4] and how
the surface integral can be used to compute Fraunhofer diffraction patterns of arbitrary shaped
apertures. Section 3 briefly discusses how the solution for two dimensional polygons appears when
Fourier transforming three dimensional polyhedrons and how the surface integral form of the Fourier
transform can be used to compute volumes and to derive not only the standard Porods law [3] for
X-ray scattering from spherical particles but also the extension of this law to anisotropic particles.
This extension has been discussed recently in a series of papers by Ciccariello and colleagues [12].
The derivation presented here is somewhat more direct.

2 Fourier and Gauss

For generality we begin in D dimensions but will rapidly particularize to 2 and 3 dimensions. Define
a shape, in D dimensions, by the function θV (~x) where θV (~x) = 1 for ~x = (x1, x2, · · · , xD) inside
V and 0 for ~x outside. This is known in certain circles as an indicator function [13]. Here we take
xi for i = 1, 2, · · · , D to be Cartesian coordinates. The (normalized) moments 〈xp11 · · ·x

pm
D 〉 of the

shape are then given by

〈xp11 · · ·x
pm
D 〉 =

1

v

∫
dDx θV (~x) xp11 · · ·x

pD
D ≡

1

v

∫
V

dDx xp11 · · ·x
pD
D (1)

where
∫
V

=
∫
θV indicates integration over the shape, v =

∫
dDx θV (~x) is the finite volume of the

shape and pi = 0, 1, 2, 3, ....for each i. The symbols V and v are used to distinguish between the
shape itself and its volume as a numerical value. Also the terms "volume" and "surface" are used
generically and should be understood to refer to a D dimensional submanifold in D dimensions and
to its D − 1 dimensional boundary, respectively.
Note that 1

v θV (~x) can be thought of as a probability density for ~x to be inside the shape. The

characteristic function or moment generating function φ̄
(
~β
)
is then given by the Fourier transform
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θV (~x) /v, i.e.,

φ̄
(
~β
)

=
1

v

∫
V

dDx θV (~x) ei
~β·~x (2)

with ~β ·~x =
∑D
i=1 βixi ≡ βixi. (Unless noted otherwise the Einstein summation convention, wherein

repeated indices are summed over their appropriate range, will be used throughout the paper.) The
bar on φ is meant to indicate that this is the normalized charactistic function, i.e., φ̄ (0) = 1. Below

we will find it convenient to work with the unnormalized function φ
(
~β
)
.

Using the power series representation of exp
[
i~β · ~x

]
and the multinomial theorem it follows that

φ̄
(
~β
)

=
1

v

∫
V

dDx

∞∑
n=0

(iβixi)
n

n!

=
∞∑
n=0

in

n!

∑
p1+p2+···+pD=n

n!

p1!p2! · · · pD!
βp11 · · ·β

pD
D 〈x

p1
1 · · ·x

pD
D 〉 (3)

This result indicates the simple but direct relation that exists between the Fourier transform of
a shape and its moments 〈xp11 · · ·x

pD
D 〉. Note that we have assumed that since v is finite we can

interchange orders of integration and summation. For all practical cases this is certainly true. Note,
this result does not require V to be convex.

We see from this result that if we can compute φ̄
(
~β
)
explicitly then the moments 〈xp11 · · ·x

pD
D 〉

follow directly from a Taylor expansion of φ̄
(
~β
)
about ~β = 0. An explicit form for φ̄

(
~β
)
can be

found by applying Gauss law to the Fourier integral. Noting that

ei
~β·~x = ~∂ ·

(
~β

iβ2
ei
~β·~x

)
(4)

with ~∂ = (∂/∂x1, ∂/∂x2, · · · , ∂/∂xD) ≡ (∂1, ∂2, · · · , ∂D) we get∫
V

dDxei
~β·~x =

∫
V

dDx ~∂ ·
(
~β

iβ2
ei
~β·~x

)

=
~β

iβ2
·
∫
∂V

dD−1s
√
g (~s)n̂ (~s) ei

~β·~R(~s) (5)

Here ∂V indicates the surface of V with ~s = (s1, s2, · · · , sD−1) being coordinates on the surface
∂V . ~R (~s) gives the position in D dimensions of the point on the surface labeled by ~s and

g (~s) = |det [gij (~s)]| =
∣∣∣det

[
∂si

~R (~s) · ∂sj ~R (~s)
]∣∣∣ (6)

where gij (~s) is the induced metric on ∂V , n̂ (~s) is the local outward normal to the surface ∂V and
|· · · | indicates the absolute value [14]. Below we show why the square root appears (see (32) and
(54)).
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Combining (3) and (5) yields

1

v

~β

iβ2
·
∫
∂V

dD−1s
√
g (~s)n̂ (~s) · ei~β·~R(s)

=

∞∑
n=0

in

n!

∑
p1+p2+···+pm=n

n!

p1!p2! · · · pD!
βp11 · · ·β

pD
D 〈x

p1
1 · · ·x

pD
D 〉 (7)

It will be convenient below to work with the unnormalized form of the characteristic function

φ
(
~β
)

= vφ̄
(
~β
)

(8)

and write the unnormalized moments as

Mp1,··· ,pD = v 〈xp11 · · ·x
pD
D 〉 =

∫
dDx θV (~x) xp11 · · ·x

pD
D (9)

Before particularizing to 2 and 3 dimensions note that expanding the left hand side of (7) in powers

of β =
∣∣∣~β∣∣∣ yields to lowest order a term proportional to 1/iβ. This term must vanish since there is

no corresponding power of β on the right and we get the result that∫
∂V

dD−1s
√
g (~s)n̂ (~s) = 0 (10)

because β̂ is arbitrary. This can be interpreted as the statement that "the boundary of a boundary
is zero". This boundary of a boundary principle has been considered to have interesting implications
with respect to the origin of physical laws. [15] The next order term yields

β̂ ·
∫
∂V

dD−1s
√
g (~s)n̂ (~s)

(
β̂ · ~R (~s)

)
(11)

where β̂ = ~β/
∣∣∣~β∣∣∣ . This is the D dimensional volume v of V. Although this formula looks straight-

forward it is actually exceedingly complex to calculate the volume of arbitrary shapes in a large
number of dimensions. [16]

The remainder of the paper considers particular cases in 2 or 3 dimensions where φ
(
~β
)
can be

computed from the surface integral either exactly or approximately. and we relate these results to
various "classical" problems in physics and mathematics.

3 Results in Two Dimensions

In this section we show how (5) and (7) can be used to derive various classical two dimensional
results in physics and mathematics.
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3.1 Smooth Plane Curves

For smooth curves in two dimensions (5) reduces to∫
V

d2xei
~β·~x =

~β

iβ2
·
∫
∂V

ds n̂ (s) ei
~β·~R(s) (12)

where V is the region enclosed by the curve ∂V given by ~R (s) with the parameter s being the
length along the curve. With ds defined as the length of an infinitesimal element of the curve, i.e.,
ds2 = d~R2, it follows that g (s) = 1. The unit tangent vector to the curve at s is given by

t̂ (s) = ∂s ~R (s) (13)

which is automatically normalized since ds =
√
d~R2, i.e.,

∣∣∣∂s ~R (s)
∣∣∣ = 1. (Generally we will use a hat

"^" to indicate the vector has been normalized to have unit length. Also we will switch back and
forth between vector and component notation, e.g., between writing û1 and (1, 0).)
We take increasing s to correspond to counterclockwise circulation of the curve so that

n̂ (s) = ε · t̂ (s) = ε · ∂s ~R (s) (14)

where

ε =

[
0 1
−1 0

]
(15)

and the "·” indicates matrix multiplication, i.e.,

ni (s) = εijnj (s) (16)

with repeated indices summed over 1,2. Note that ε is theD = 2 version of the totally antisymmetric
tensor, often called the Levi-Civita tensor [17], defined as +1 for even permutations of i, j = 1, 2,
−1 for odd permutations and 0 if i = j.
Substituting (14 ) into (12) and integrating by parts yields∫

V

d2xei
~β·~x = − 1

iβ2

∫
∂V

ds
(
~β · ε · ~R (s)

)(
i~β · ∂s ~R (s)

)
ei
~β·~R(s)

= −
∫
∂V

ds
(
β̂ · ε · ~R (s)

)(
β̂ · ∂s ~R (s)

)
ei
~β·~R(s) (17)

The nominal 1/β pole in (12) has been cancelled and we can set β to zero for arbitrary nonzero

β̂ = ~β/
∣∣∣~β∣∣∣ which gives

v =

∫
V

d2x = −
∫
∂V

ds
(
β̂ · ε · ~R (s)

)(
β̂ · ∂s ~R (s)

)
(18)

Letting β̂ be (1, 0) or (0, 1) with ~R (s) = (R1 (s) , R2 (s)) yields

v = −
∫
∂V

ds R2 (s) ∂sR1 (s) =

∫
∂V

ds R1 (s) ∂sR2 (s) (19)
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Averaging the two forms gives

v =
1

2

∫
∂V

ds (R1 (s) ∂sR2 (s)−R2 (s) ∂sR1 (s))

=
1

2

∫
∂V

ds Ri (s) εij∂sRj (s) (20)

Both (19) and (20) are standard forumulae for the area enclosed by the curve ~R (s) [18].

3.2 Polygons

A polygon with N sides and N vertices in two dimensions can be defined by its vertices, arranged
in a particular order, ~v1, ~v2, · · · , ~vN with ~vi = (x1i, x2i) . For computational convenience it is useful
to let ~vN+1 = ~v1. We consider only orientable , i.e., none of the edges cross over or intersect one
another, and simply connected polygons. The integral over ∂V in (7) can be evaluated explicitly
in this case with the result

φ
(
~β
)

=
~β

iβ2
·
∫
∂V

dD−1s n̂ (~s) · ei~β·~R(s)

= − 1

β2

N∑
n=1

~β⊥ · (~vn+1 − ~vn)

~β · (~vn+1 − ~vn)

(
exp

(
i~β · ~vn+1

)
− exp

(
i~β · ~vn

))
(21)

where
~β⊥ ≡ ~β · ε = (β1, β2) ·

[
0 1
−1 0

]
= (β2,−β1) (22)

The "·" stands for standard matrix vector multiplication. Note that (21) makes sense even if
~β · (~vn+1 − ~vn) vanishes for any given n.

Equating the surface integral to the series expansion in terms of moments gives
∞∑
n=0

in

n!

n∑
p=0

n!

p! (n− p)!β
p
1β

(n−p)
2 Mp,n−p

= − 1

β2

N∑
n=1

~β⊥ · (~vn+1 − ~vn)

~β · (~vn+1 − ~vn)

(
exp

(
i~β · ~vn+1

)
− exp

(
i~β · ~vn

))
(23)

Now expand the right hand side in powers of βi

1

β2

N∑
n=1

~β⊥ · (~vn+1 − ~vn)

~β · (~vn+1 − ~vn)

(
exp

(
i~β · ~vn+1

)
− exp

(
i~β · ~vn

))

=
1

β2

N∑
n=1

~β⊥ · (~vn+1 − ~vn)

~β · (~vn+1 − ~vn)

 ∞∑
m=1

(
i~β · ~vn+1

)m
−
(
i~β · ~vn

)m
m!


=

1

β2

∞∑
m=1

N∑
n=1

i

m!
~β⊥ · (~vn+1 − ~vn)

m−1∑
p=0

(
i~β · ~vn+1

)m−1−p (
i~β · ~vn

)p
(24)
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where β2 = ~β
2

= βiβi = β 2
1 + β 2

2 . In the second step we have used the identity

an − bn = (a− b)
n−1∑
m=0

an−1−mbm (25)

Substituting (24) into (23) gives

∞∑
n=0

in

n!

n∑
p=0

n!

p! (n− p)!β
p
1β

n−p
2 Mp,n−p

= − 1

β2

∞∑
m=1

N∑
n=1

i

m!
~β⊥ · (~vn+1 − ~vn)

m−1∑
p=0

(
i~β · ~vn+1

)m−1−p (
i~β · ~vn

)p
(26)

Letting ~β = ββ̂ and ~β⊥ = ββ̂⊥ we see that the n
th term on the left hand side is proportional to

βn whereas the mth on the right is proportional to βm−2. Hence considering each side as a power
series in β the coeffi cients of the m term on the right must equal the coeffi cient of n = m− 2 term
on the left. Below we write out the general relation between Ma,b and powers of the vertices. Here
we begin by considering the first few terms individually.

3.2.1 m = 1 term

The m = 1 term on the right of (26) has no corresponding term on the left and so we must have

0 =
i

β2
~β⊥ ·

N∑
n=1

(~vn+1 − ~vn) (27)

The fact that this should vanish follows from the fact that it scales as 1/β whereas the left hand
side remains finite as β → 0. Also this term is imaginary and the result must be real. And indeed
this term does vanish, trivially, since we have defined ~vN+1 = ~v1 and the sum of the directed sides,
~vn+1 − ~vn, of a closed polygon must vanish. For the case where the boundary ∂V is everywhere
smooth the form of the dominant term as β → 0 is given by

lim
β→0

~β

iβ2
·
∫
∂V

ds n̂ (s) ei
~β·~R(s) → β̂

iβ
·
∫
∂V

ds n̂ (s)⇒
∫
∂V

ds n̂ (s) = 0 (28)

The last equality follows from the fact that this term must vanish for any (non-zero) ~β. The results
in (27) and (28) can be seen as a simple version of the more formal statement that the boundary of
a boundary is zero [15], i.e., the curve which bounds an area in two dimensions has no end points.
They can also be related to Hopfs Umlaufsatz [6].

3.2.2 m = 2 term

The m = 2 term on the right of (26) equals the n = 0 term on the left and so we have
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M00 = − i
2

1

β2

N∑
n=1

~β⊥ · (~vn+1 − ~vn)

1∑
p=0

(
i~β · ~vn+,1

)1−p (
i~β · ~vn

)p
= − i

2

1

β2

N∑
n=1

(
~β⊥ · (~vn+1 − ~vn)

)(
i~β · ~vn+1 + i~β · ~vn

)
=

1

2

N∑
n=1

(
β̂⊥ · (~vn+1 − ~vn)

)(
β̂ · (~vn+1 + ~vn)

)
(29)

But by definition M0,0 is the area of the polygon. Defining ~ln = ~vn+1−~vn = the vector from vertex
n to vertex n+ 1 and ~cn = (~vn+1 + ~vn) /2 = position of the center of side n we have

M0,0 = Area =

N∑
n=1

(
β̂⊥ ·~ln

)(
β̂ · ~cn

)
(30)

Taking β̂ = (0, 1) gives β̂⊥ = (−1, 0) and so

Area = −
N∑
n=1

ln,1cn,2 (31)

The geometric interpretation of this is straightforward. Each of the ln,1cn,2 terms correspond to
the area of a 4-sided polygon of width |ln,1| in the x1 direction and mean height |cn,2| in the x2
direction. If we take all the vertices to lie in the first quadrant, vn,i ≥ 0 for i = 1, 2 then all the cn,2
are non-negative but the ln,1 change sign depending on whether ~ln points generally in the +x1 or
− x1 direction. If we consider that the n = 1, · · · , N ordering corresponds to following the vertices
in a counterclockwise direction around the polygon then the positive ln,1 will generally run along
the bottom sides of the net polygon and the negative ln,1 will generally run along the top sides of
the net polygon, then the area of the net polygon is the total area of all the 4-sided polygons along
the bottom of the net polygon subtracted from the area of the 4-sided polygons along the top of
the net polygon.
Taking 1/2 the sum of (30) with β̂ = (0, 1) and with β̂ = (1, 0) we find that the area can also

be written as 1
2

∑N
n=1 det [Qn] where the elements of the 2×2 matrices Qn are given by Qn,ij =

vn,ivn+1,j ,which is the standard result [20].
Finally, (30) also shows that the area of a parallelogram formed by two vectors ~ai with i = 1, 2

which therefore has vertices ~v1 = ~v5 = 0, ~v2 = ~a1, ~v3 = ~a1 + ~a2 and ~v4 = ~a2 can be written in the
coordinate independent form as

Area =

√∣∣∣∣det

[
~a1 · ~a1 ~a1 · ~a2
~a1 · ~a2 ~a2 · ~a2

]∣∣∣∣ = a1,1a2,2 − a1,2a2,1 = det [ai,j ] (32)

This follows since for the parallelogram (30) reduces to

Area =
(
β̂⊥ · ~a2

)(
β̂ · ~a1

)
−
(
β̂⊥ · ~a1

)(
β̂ · ~a2

)
= ~a1 · ε · ~a2
= a1,1a2,2 − a1,2a2,1 (33)
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where in the second step we have taken β̂ = â1. Note that this is the same as |~a1 × ~a2| with "×"
the standard cross product.

3.2.3 m = 3 term

The m = 3 term on the right hand side corresponds to the n = 1 term on the left and so after
cancelling i from both sides we have

β̂1M1,0 + β̂2M0,1 =
1

3!

N∑
n=1

β̂⊥ · (~vn+1 − ~vn)

((
β̂ · ~vn+1

)2
+
(
β̂ · ~vn+1

)(
β̂ · ~vn

)
+
(
β̂ · ~vn

)2)
(34)

It follows from the definition of Ma,b that

M1,0 = Area×X1 and M0,1 = Area×X2 (35)

where Xi is the "center of mass" or centroid of the polygon in the i = 1, 2 directions.
For β̂ = (1, 0), β̂⊥ = (0, 1) we have

M1,0 =
1

3!

N∑
n=1

(vn+1,2 − vn,2)
(
v2n+1,1 + v2n,1 + vn+1,1vn,1

)
(36)

and for β̂ = (0, 1) , β̂⊥ = (−1, 0) we have

M0,1 = − 1

3!

N∑
n=1

(vn+1,1 − vn,1)
(
v2n+1,2 + v2n,2 + vn+1,2vn,2

)
(37)

Explicit evaluation of ∫
V

dx1dx2xi (38)

with i = 1 or 2 by substituting xi = ~∂ ·
(
x2i x̂i/2

)
, with no sum on i, yields the same result as (36)

and (37), respectively.

3.3 Moments and Shapes of Polygons

We begin this section by using a version of (5) modified to live in the complex plane to provide
an alternative derivation of the result of Davis which is a generalization from triangles to polygons
of the Motzkin-Schoenberg formula [11]. This result is also related to the so-called "shape from
moments" problem which is to find the ordered vertices of a polygon given an appropriate set of
the polygon moments [4] [5]. As shown by Milanfar [4], in the complex plane with z = x+ iy, the
result of Davis can be written∫

V

dxdy∂ 2
z h (z) =

i

2

N∑
n=1

(
z∗n−1 − z∗n
zn−1 − zn

−
z∗n − z∗n+1
zn − zn+1

)
h (zn) (39)

Here V is a simply connected orientable polygon with vertices zn = xn + iyn (z∗n = zn − iyn),
n = 1, · · · , N , in the complex plane and the function h (z) is analytic (= holomorphic = regular) in
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the closure of V . In the sum we have let z0 = zN and z1 = zN+1. For the remainder of this section
we follow the standard notation for variables in the complex plane, i.e., we replace x1with x, x2
with y, etc..
To write h (z) as a Fourier transform start with the definition of an analytic function, i.e., that

it can be written as a power series in non-negative powers of z

h (z) =

∞∑
n=0

anz
n (40)

Now define the function h̃ (β), with β real, by

an =

+∞∫
−∞

dβh̃ (β)
(iβ)

n

n!
(41)

This may seem restrictive but if we take h̃ (β) to vanish outside |β| ≤ 1 then we can represent h̃ (β)
as

h̃ (β) =

∞∑
n=0

AnPn (β) (42)

where Pn (β) are Legendre polynomials. With this representation the complex coeffi cients An can
be chosen to satisfy (41).
Substituting (41) into (40), interchanging orders of integration and summation we get

h (z) =

+1∫
−1

dβh̃ (β)

∞∑
n=0

(iβz)
n

n!
=

+1∫
−1

dβh̃ (β) eiβz (43)

which is the analytic contiuation of h (x) =
∑∞
n=0 anx

n.
Using the obvious notation (a, b) · (x, y) = ax+ by, we now have∫

V

dxdy∂ 2
z h (z) = −

+1∫
−1

dβh̃ (β)

∫
V

dxdyβ2eiβz

=
i

2

+1∫
−1

dβh̃ (β)

∫
V

dxdy (∂x, ∂y) · β (1,−i) exp [iβ (1, i) · (x, y)]

=
1

2

+1∫
−1

dβh̃ (β)

N∑
n=1

β (1,−i) · ε ·
(
(x, y)n+1 − (x, y)n

)
β (1, i) ·

(
(x, y)n+1 − (x, y)n

)
×
(
exp

(
iβ (1, i) · (x, y)n+1

)
− exp (iβ (1, i) · (x, y)n)

)
=
i

2

+1∫
−1

dβh̃ (β)

N∑
n=1

(
z∗n − z∗n−1
zn − zn−1

−
z∗n+1 − z∗n
zn+1 − zn

)
exp (iβzn)

=
i

2

N∑
n=1

(
z∗n−1 − z∗n
zn−1 − zn

−
z∗n − z∗n+1
zn − zn+1

)
h (zj) (44)
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In the third line ε is the matrix defined in (15). In the second step we have used (5) and in the
last step the definition of h (z) in terms of its Fourier transform. The β’s cancel in the coeffi cient
of the exponents in line three and hence we reproduce the result of Davis that the integral over a
polygon of ∂ 2

z h (z) is the sum of h (z) evaluated at the vertices of the polygon times coeffi cients
which depend only on the vertices and not on h (z) .

The moments of a polygon obviously contain the polygon shape information. The order of the
vertices is important as reordering them nominally leads to a polygon with a different shape and/or
can make it nonorientable. For N vertices there are 2N independent real numbers corresponding to
the ~v1, · · · , ~vN vertices which define the polygon. Thus the infiinite set of all possible moments of
the polygon must be highly redunant.We will not solve this "shape from moments" problem here.
Milanfar and others [4] [5] have shown how to solve for the vertices given a particular set of complex
moments which can be easilly computed from (63) by letting h (z) = zk.Here we merely present the
complete set of relations between all possible moments Ma,b and the vertices (x, y)n of a polygon
that follows from (34).
To derive an explicit relation between the moments and the vertices of an arbitrary orientable

polygon multiply (32) through by β2 = β21 + β22 and use the fact that the m = 1 term on the right
hand side vanishes identically. The derivation is facilitated by defining a function θ (· · · ) which
vanishes if any one or more of its arguments is negative and equals 1 otherwise. This function can
be used to keep track of the limits on the sums when the summation indices are redefined so that
the powers of β1 and β2 are written as β

a
1 β

b
2 on both sides of the equation. Then using the fact

that the coeffi cient of β a
1 β

b
2 on the left must equal the coeffi cient of β a

1 β
b
2 on the right for the

same given non-negative integer values of a and b we find, with ~vn = (x1,n, x2,n)

θ (a− 2)
Ma−2,b

(a− 2)!b!
+ θ (b− 2)

Ma,b−2
a! (b− 2)!

= θ (b− 1, a+ b− 2)

a∑
q=0

a+b−1−q∑
p=0

(
θ (p+ q − a) 1

(a+b)!
(a+b−1−p)!

q!(a+b−1−p−q)!
p!

(a−q)!(p+q−a)!
×
∑N
n=1 (x1,n+1 − x1,n)x q

1,n+1x
a+b−1−p−q
2,n+1 x a−q

1,n x p+q−a
2,n

)

− θ (a− 1, a+ b− 2)

a−1∑
q=0

a+b−1−q∑
p=0

(
θ (p+ q + 1− a) 1

(a+b)!
(a+b−1−p)!

q!(a+b−1−p−q)!
p!

(a−q−1)!(p+q+1−a)!
×
∑N
n=1 (x2,n+1 − x2,n)x q

2,n+1x
a+b−1−p−q
2,n+1 x a−q−1

1,n x p+q+1−a
2,n

)
(45)

The derivation is straightforward but tedious.

3.4 Fraunhofer Diffraction

Fraunhofer diffraction occurs when the light diffracted from an aperture or opening in an opaque
screens is observed in a plane far from the aperture itself [2]. By "far" we mean that the distance
between the opaque screen and the plane of observation, which is by convention taken to be parallel
to the screen, is much larger than the maximum dimension of the aperture. For the case where
the opaque screen lies in the x1x2 plane and the illumination is a unit amplitude plane wave of
wavelength λ incident on the screen from the side opposite the observation plane, the amplitude
of the diffracted light at position xi in the observation plane a distance L away from the screen is
given by

A (~x) =

∫
d2x′θV (~x′) exp

[
i
k

L
xix
′
i

]
=

∫
V

d2x′ exp

[
i
k

L
xix
′
i

]
(46)
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Here θV (x, y) = 1 inside the aperture and 0 outside describes the aperture shape and k = 2π/λ.
This is essentially the left hand side of (5) but with

βi =
kxi
L

(47)

and without the normalization factor. The intensity of the diffraction pattern is given by I (~x) =

|A (~x)|2 .
We consider two cases, a circular aperture whose solution follows almost trivially from (5) and

a slit whose solution is already implicit in (21).
For a circular aperture of radius R centered at xi = 0 it follows from (5) that

A (~x) =
~βR

iβ2
·
2π∫
0

dϕr̂ (ϕ) exp
[
i~β ·Rr̂ (ϕ)

]
(48)

with r̂ (ϕ) = ~x′/ |~x′| .Writing ~β · r̂ (ϕ) = β cos
(
ϕ− ϕβ

)
where ϕβ is the angle ~β makes with respect

to the x1-axis and β =
∣∣∣~β∣∣∣ = k

√
x2 + y2/L, (48) becomes

A (~x) =
R

iβ

2π∫
0

dϕ cos
(
ϕ− ϕβ

)
exp

[
iβR cos

(
ϕ− ϕβ

)]

=
R

iβ

−i
β
∂R

2π∫
0

dϕ exp [iβR cos (ϕ)]

= − R
β2

2π∂RJ0 (βR)

= πR2
(

2J1 (βR)

βR

)
(49)

Here the Jn (x) are the Bessel functions of the first kind. This is the standard result for a circular
aperture [2]. .
For a slit (rectangular) aperture of width 2ai in the xi direction, centered at xi = 0, we merely

have to substitute ~v1 = (a1, a1) , ~v2 = (−a1, a2) , ~v3 = (−a1,−a2) , ~v4 = (a1,−a2) , and ~v5 = ~v1 into
(21) to obtain

A (~x) = − 1

β2

N∑
n=1

~β · ε · (~vn+1 − ~vn)

~β · (~vn+1 − ~vn)

(
exp

(
i~β · ~vn+1

)
− exp

(
i~β · ~vn

))

=
1

β2


β2
β1

(exp (−ia1β1 + ia2β2)− exp (iβ1a1 + iβ2a2))

−β1β2 (exp (−ia1β1 − ia2β2)− exp (−iβ1a1 + iβ2a2))

+β2
β1

(exp (ia1β1 − ia2β2)− exp (−iβ1a1 − iβ2a2))
−β1β2 (exp (ia1β1 + ia2β2)− exp (+iβ1a1 − iβ2a2))


= (2a1) (2a2)

sin (β1a1)

β1a1

sin (β2a2)

β2a2
(50)
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which again is the standard result [2].
Fraunhofer diffraction patterns for arbitrary (orientable) polygons can be calculated simply by

substituting the vertex values into (21). It is interesting to compare the patterns generated for a
given set of vertices as the vertices are reordered to make the polygon nonorientable.

4 Results in Three Dimensions

Before discussing Porods law we point out an essentially obvious but useful fact. Since the faces
of a polyhedron are themselves polygons it follows that applying (5) to a polyhedron reduces the
integral over the volume to a sum of integrals over the areas of polygonal faces and then applying
(32) to the faces themselves reduces the volume integral to a sum of integrals over the edges. These
integrals can of course be evaluated exactly. The only issue is the bookkeeping required to keep
proper track of the vertices.
As one example consider the parallelepipid formed by three vectors ~ai, i = 1, 2, 3. It has six

parallelogram faces with positions on the faces ~Rf (~s) given by

~R1 (~s) = s1â1 + s2â2 ~R2 (~s) = s1â2 + s2â3 ~R3 (~s) = s1â3 + s2â1
~R4 (~s) = ~a3 + ~R1 (~s) ~R5 (~s) = ~a1 + ~R2 (~s) ~R6 (~s) = ~a2 + ~R3 (~s) (51)

The values of si in each case range from 0 to the length of the associated vector, e.g., for f = 3, s1 =
0 to |~a3| = a3 and s2 = 0 to|~a1| = a1. We assume the vectors are ordered so that ~a1 · (~a2 × ~a3) > 0.
Expanding the exponent in (5) to first order in β we find that the volume of V is given by

v = β̂ ·
∫
∂V

d2s
√
g (~s) n̂ (~s)

(
β̂ · ~R (~s)

)
(52)

For the parallelepiped gf and n̂f are constant on each face. Using the fact that the normals point
in opposite directions on opposite faces and choosing β̂ = â1 so that â1 · n̂4 (~s) = ~a1 · n̂6 (~s) = 0 we
get

v = (â1 ·
√
g5n̂5) a1a2a3 (53)

But
∫
d2s
√
g5 =

√
g5a2a3 is the area of face 5 which is a parallelogram formed by ~a2 and ~a3. As

shown above it has an area given by |~a2 × ~a3| = |â2 × â3| a2a3 and since n̂5 = (â2 × â3) / |â2 × â3|
we have

√
g5n̂5 = â2 × â3 and so for the parallelepided

v = ~a1 · (~a2 × ~a3) = det [ai,j ] =
√

det [~ai · ~aj ] (54)

4.1 Porods Law

Finally, we rederive the anisotropic version of Porods law as given in the work of Ciccariello, et.
al. [12]. The anisotropic result of course reduces to the isotropic result for spherical particles. Here
we use the notation ~k rather than ~β as is more common in this context.

The intensity I
(
~k
)

= I
(
kk̂
)
of light of wavelength λ = 2π/

∣∣∣~k∣∣∣ = 2π/k scattered off a particle

defined by the shape function θV (~x) in the direction k̂ = k̂out− k̂in where k̂in
(
k̂out

)
is the direction
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of propagation of incident(scattered) light is

I
(
~k
)
∼
∣∣∣∣∫ dDx exp

[
i~k · ~x

]
θV (~x)

∣∣∣∣2 (55)

To be general, for now, we start in D dimensions. Porods law [12] follows from this in the case
where the magnitude of the scattering wavevector k is large, i.e, λ is small and so Porods law is
often associated with X-ray scattering.
To obtain Porods law use (5) and evaluate the integral over ∂V in the limit of large k by using

the method of steepest descents which assumes that the dominant contribution to the integral comes
from the regions around the stationary phase points of the exponential, i.e., from positions ~s = ~σ
such that

~∂s

(
~k · ~R (~s)

)∣∣∣
~s=~σ

= k~∂s

(
k̂ · ~R (~s)

)∣∣∣
~s=~σ

= 0 (56)

and that the other factors in the integrand,
√
g (~s)n̂ (~s) in this case, are slowly varying [21]. Here

~∂s = (∂s1 , ∂s2 , · · · ) is the gradient with respect to the surface coordinates si.For an arbitrary shape
there will generally be multiple points where the phase is stationary. For simplicity consider a single
solution ~σ. The argument of the exponential in the integrand can be approximated by

i~k · ~R (~s) = ik

(
k̂ · ~R (~σ) +

1

2

(
∂σi∂σj k̂ · ~R (~σ)

)
(si − σi) (sj − σj)

)
(57)

to second order in ~s− ~σ. Substituting into (5) then gives∫
V

dDx exp
[
i~k · ~x

]
' exp

[
ikk̂ · ~R (~σ)

] k̂
ik
·
∫
dD−1s

√
g (~s)n̂ (~s) exp

[
ik

2

(
∂σi∂σj k̂ · ~R (~σ)

)
(si − σi) (sj − σj)

]
' exp

[
ikk̂ · ~R (~σ)

]( k̂

ik
· n̂ (~σ)

) √
g (~σ)π(D−1)/2√

det
[
− ik2 ∂σi∂σj k̂ · ~R (~σ)

] (58)

Under the assumption that
√
g (~s)n̂ (~s) is slowly varying compared to the exponential

√
g (~s)n̂ (~s)

can be replaced with
√
g (~σ)n̂ (~σ) and moved outside the integral. Under the assumption that the

dominant contribution comes from the region around ~s = ~σ the integration range can be extended
to ±∞ thus yielding a standard Gaussian integral which reduces to the result shown above. The
determinant in the denominator is taken over the i, j indices.

Using the fact that det
[
− ik2 ∂σi∂σj k̂ · ~R (~σ)

]
= kD−1 det

[
− i
2∂σi∂σj k̂ · ~R (~σ)

]
we get∫

V

dDx exp
[
i~k · ~x

]
∼ 1

k

1

k(D−1)/2
=

1

k(D+1)/2
(59)

and so
I
(
~k
)
∼ 1

kD+1
(60)

Thus in 3 dimensions I
(
~k
)
scales as 1/k4 for large k. This is the standard isotropic statement

of Porods law [3]. But as pointed out by Ciccariello, det
[
∂σi∂σj k̂ · ~R (~σ)

]
is proportional to the
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Gaussian curvature (in 3 dimensions) of the surface ∂V and is the appropriate prefactor. In general
for an arbitrary shaped particle there will be multiple stationary phase points, i.e., ~σ1, ~σ2, · · ·
which must be summed over to get the complete amplitude. There are also issues with positive
and negative curvature which must be carefully considered as well as how to handle cases where
the curvature vanishes [12]. The 1/k3 dependence predicted for two dimensions, with the relevant
prefactor, has recently been reported [22]

5 Conclusion

We have shown how a simple idea, that of combining Gauss’s law with the Fourier transform
provides alternative solutions and/or derivations of many different classical results in physics and
mathematics. No doubt there are many other problems and proofs to which this idea can be applied.
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