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ABSTRACT

Formulae are derived for computing the total scattering matrix of a combination of individual scatterers
(gratings, particles, surfaces, etc.) given the scattering matrices of the individual non-overlapping scatterers and
their spatial relation to one another.

1 Background

Consider the structure shown in Figure 1 which consists of two individual scatterers labeled "Structure 1"
and "Structure 2". The r and t matrices are the reflection and transmission scattering matrices, respectively, of
the individual structures. We will define what we mean by a scattering matrix in detail below. We refer to them
as matrices since they depend on both the incoming wave vector component in the x direction, β′ and on the
outgoing component, β, i.e. r = r

(
β, β′

)
and t = t

(
β, β′

)
. Generally β and β′ are continuous variables but for

periodic structures they often can be treated as discrete, hence the term "matrices". An r∨ relates the value of
the incoming field (propagating in the −z direction) evaluated at the top surface of a structure to the outgoing
field (propagating in the +z direction) also evaluated at the top surface The t∨ matrix relates the value of the
incoming field evaluated at the top surface to the outgoing field (propagating in the −z direction) evaluated at
the bottom surface. Similarly for r∧ and t∧ but with "top" and "bottom" exchanged. In sum, the superscript
characters ∨ and ∧ indicate whether the reflection and transmission is from the upper side or the lower side of a
given structure, respectively. The R and T matrices are the net reflection and transmission matrices, respectively,
of the combined structure. Here we just consider net reflection in region 3 and net transmission from region 3 to
region 1.

Our purpose is to derive formulae for R and T in terms of the r and t matrices and the spatial relation between
individual scatterers.

Here we explicitly consider the scattering of electromagnetic waves in two dimensions (2D), i.e., ~ρ = xx̂+ zẑ
where x̂ and ẑ are unit vectors in the x and y directions, respectively. But the results generalize directly to
3D and to any other type of scattering governed by a wave equation, e.g., sound waves, solutions to the time-
independent Schrodinger equation, etc.. For TE polarization where the electric field is given by ~E = φ (~ρ) e−iωtŷ =
φ (x, z) e−iωtŷ with the y axis into the page in Figure 1, ŷ the unit vector in the y direction and t the time, Maxwells



equations reduce to (
~∂2 + n (~ρ)

2
k2
)
φ (~ρ) = 0 (1)

where k = ω/c with c the vacuum speed of light and n (~ρ) the spatially dependent index of refraction. The
boundary conditions for TE polarization are: φ and ŝ · ~∂φ are continuous across discrete jumps in the index n with
ŝ is the unit normal to the interface between the different index values and ~∂ = x̂∂x + ẑ∂z. For TM polarization
where the magnetic field is given by ~B = φ (~r) e−iωtŷ = φ (x, z) e−iωtŷ and we assume the magnetic permeability
is constant over all space, Maxwells equations reduce to

~∂ ·
(

1

n (~ρ)
2
~∂φ (~ρ)

)
+ k2φ (~ρ) = 0 (2)

with the boundary condtions: φ and ŝ · ~∂
(
φ�n2

)
are continuous across discrete jumps in the index. It should be

noted that the boundary conditions follow directly from Eqs. 1 and 2 in the limit where n (~ρ) becomes step wise
constant.

2 Reflection and Transmission Matrices of Isolated Structures

In the regions of the structures 1 and 2, i.e., between z1,1 and z1,2 and between z2,2 and z2,3 the index n is
assumed to vary with both x and z. (Note for zs,` the first number indicates the structure, s = 1, 2, and the
second the region number, ` = 1, 2.3.) In the homogeneous layers above z2,3, between z1,2 and z2,2 and below
z1,1 we take n to be spatially constant and so in those regions the solutions φ (~r) to either Eq. 1 or Eq. 2 can be



written as superpositions of plane waves in the form

φ` (~ρ) = φ+` (~ρ) + φ
−
` (~ρ)

with

φp` (~ρ) =

+∞∫
−∞

dβ exp [iβx+ ipγi (β) (z − z0)] φ̃
p
` (β, z0) (3)

Here γi (β) =
√
n2i k

2 − β2 where ki is the value of k in region a. p takes the "values" + and − when a superscript
an +1 and −1, respectively when multiplying γi. Note that for ni real if |β| < nik then the exp [iγi (β) z] is an

oscillating function of z, i.e., propagating waves, whereas if |β| > nik then γi (β) = i
√
β2 − n2i k2 the + waves

(− waves) decay in the +z (−z) directions, respectively, i.e., they are evanescent waves. For complex valued ni
this sharp disctinction is lost and the waves are a combination of both propagating and evanescent for all β. In
the homogeneous regions propagating the field in the x and z directions amounts to multiplying φ̃p` by the phase
factor exp [iβx+ ipγi (β) z] . The z0 dependence is included in φ̃

p
` to indicate in which constant z plane is φ̃

p
` the

Fourier transform in x of φp` with the z dependent phase factor equal to unity, viz.,

φ̃p` (β, z0) =

+∞∫
−∞

dx

2π
exp [−iβx]φp` (x, z = z0) (4)

To simplify notation define
φ̃ps,` (β) = φ̃p` (β, zs,`) (5)

and drop the limits of integration, which are always −∞ to +∞ on all β and x integrations. Given the above
definition of the reflection and transmission matrices of the individual structures, i.e., when only one structure is
present, they relate the φ̃ps,` to each other as follows

φ̃−1,1 (β) =

∫
dβ′t∨1

(
β, β′

)
φ̃−1,2

(
β′
)
+

∫
dβ′r∧1

(
β, β′

)
φ̃+1,1

(
β′
)

φ̃+1,2 (β) =

∫
dβ′t∧1

(
β, β′

)
φ̃+1,1

(
β′
)
+

∫
dβ′r∨1

(
β, β′

)
φ̃−1,2

(
β′
)

(6)

for the Structure 1 and

φ̃−2,2 (β, z
∧
2 ) =

∫
dβ′t∨2

(
β, β′

)
φ̃−2,3

(
β′
)
+

∫
dβ′r∧2

(
β, β′

)
φ̃+2,2

(
β′
)

φ̃+2,3 (β, z
∨
2 ) =

∫
dβ′t∧2

(
β, β′

)
φ̃+2,2

(
β′
)
+

∫
dβ′r∨2

(
β, β′

)
φ̃−2,3

(
β′
)

for Structure 2. The r and t matrices are functions of an incoming β′ and an outgoing β and the integral over
β′ is equivalent to matrix multiplication on the φ̃ps,` and φ̃

p
s,`. Using the notation

∫
dβ′f

(
β, β′

)
g
(
β′
)
≡ f · g the

above equations can be combined and abbreviated as

φ̃−s,` = t∨s · φ̃−s,`+1 + r∧s · φ̃
+
s.`

φ̃+s,`+1 = t∧s · φ̃+s,` + r∨s · φ̃
−
s,`+1 (7)

Note that φ̃−s,`+1 and φ̃
+
s,` are incoming fields and hence are treated as given. To determine the individual r and

t matrices requires solving Eqs. 1 and 2 in the inhomogeneous regions.

3 Combined Structure R and T matrices

To solve for R and T for the combined structure consider the net contribution to φ̃−2,2. It is the sum of what
is transmitted down through Structure 1, i.e., t∨2 · φ̃−2,3 and what is reflected off the bottom of Structure 1. But



tracing where this reflected component comes from we find it is given by

r∧2 · p2 (h) · r∨1 · p2 (h) · φ̃−2,2 (8)

=

∫
dβ4dβ3dβ2dβ1r

∧
2 (β, β4) exp [iγ2 (β4)h] δ (β4 − β3) r∨1 (β3, β2) exp [iγ2 (β2)h] δ (β2 − β1) φ̃−2,2 (β1)

Defining the matrix form of exp [iγ2 (β)h] as p2 (h) = exp [iγ2 (β)h] δ
(
β − β′

)
where δ (· · · ) is a Dirac delta

function and combining this with the transmitted portion gives

φ̃−2,2 = t∨2 · φ̃−2,3 + r∧2 · p2 (h) · r∨1 · p2 (h) · φ̃−2,2 (9)

Solving for φ̃−2,2 gives

φ̃−2,2 = (I − r∧2 · p2 (h) · r∨1 · p2 (h))
−1 · t∨2 · φ̃−2,3 (10)

where I is the identity matrix, i.e., δ
(
β − β′

)
.

Using the same approach consider the net contribution to φ̃+2,3. It is given by what is reflected from the top
of Structure 2, i.e., r∨2 · φ̃−2,3 plus what is transmitted up through it from z2,2. But tracing this back to φ̃

−
2,2 and

adding it to r∨2 · φ̃−2,3 we get

φ̃+2,3 = r∨2 · φ̃−2,3 + t∧2 · p2 (h) · r∨1 · p2 (h) · φ̃−2,2
=

(
r∨2 + t

∧
2 · p2 (h) · r∨1 · p2 (h) · (I − r∧2 · p2 (h) · r∨1 · p2 (h))

−1 · t∨2
)
· φ̃−2,3 (11)

Thus we obtain
R = r∨2 + t

∧
2 · p2 (h) · r∨1 · p2 (h) · (I − r∧2 · p2 (h) · r∨1 · p2 (h))

−1 · t∨2 (12)

Again using the same approach we find

φ̃−1,1 = t∨1 · p2 (h) · φ̃−2,2
= t∨1 · p2 (h) · (I − r∧2 · p2 (h) · r∨1 · p2 (h))

−1 · t∨2 · φ̃−2,3 (13)

and so
T = t∨1 · p2 (h) · (I − r∧2 · p2 (h) · r∨1 · p2 (h))

−1 · t∨2 (14)

The dependence of p2 on h allows for direct calculation of R and T as functions of the vertical spacing between
the upper and lower structures. We now want to be able to shift the horizontal positions as well. For this we
need to determine how the r and t matrices change when translated in x.

4 Translation in x

We can determine how translation in x affects r∨ and t∨ for an individual scatterer by relating them to the
Greens function G for Eqs. 1 and 2. This derivation is the long way around but it also provides the relation
between r and t matrices and G. We will only explicitly write out the r∨ case. For TE polarization the Greens
function G (~ρ,~ρ′) = G (x, z, x′, z′) is defined by(

~∂2 + k2n (~ρ)
2
)
G (~ρ,~ρ′) = δ (~ρ− ~ρ′) (15)

with outgoing boundary conditions at spatial infinity. Take n (~ρ) to be constant for z > 0 and the same constant
for z < zL < 0 and to have arbitrary finite variation in the region zL < z < 0, i.e., there is an arbitrary scattering



structure in the region zL < z < 0. See Figure 2. Since the system is not translation invariant G depends
independently on x, x′ and z, z′ and not on x − x′ and z − z′. Thus Fourier tranforming with respect to both ~ρ
and ~ρ′, G can be written as

G (~ρ,~ρ′) =
1

(2π)
4

∫
dβdβ′dγdγ′g

(
β, γ, β′, γ′

)
exp

[
i
(
βx− β′x′

)
+ i (γz − γ′z′)

]
(16)

where g satisfies (
−β2 − γ2 + k2n (−i∂β ,−i∂γ)2

)
g
(
β, γ, β′, γ′

)
= δ

(
β − β′

)
δ (γ − γ′) (17)

Note that it follows from this that
(
~∂′2 + k2n (~ρ′)

2
)
G (~ρ,~ρ′) = δ (~ρ− ~ρ′) since we can switch the dummy integra-

tion variables in Eq 16, i.e., G is symmetric in ~ρ and ~ρ′.

Now shift the scattering object in the x direction by a distance s, i.e., n (x, z)→ n (x− s, z). We want to find
a Greens function G′ that satisfies(

∂2x + ∂
2
z + k

2n (x− s, z)2
)
G′ (x, z, x′, z′) = δ (~ρ− ~ρ′) (18)

But if we shift both x and x′ in G by s then it will satisfy

δ (~ρ− ~ρ′) =
(
∂2x−s + ∂

2
z + k

2n (x− s, z)2
)
G (x− s, z, x′ − s, z′)

=
(
∂2x + ∂

2
z + k

2n (x− s, z)2
)
G (x− s, z, x′ − s, z′) (19)

and so G′ (x, z, x′, z′) = G (x− s, z, x′ − s, z′) .

To determine r and how it changes with the shift s write the solution to(
~∂2 + k2n (~ρ)

2
)
φ (~ρ) = 0 (20)

with an incoming field φ− (~ρ) from z > 0 as

φ (~ρ) = φ− (~ρ) + φ+ (~ρ)

=

∫
dβ′eiβx−iγ(β)z +

∫
dβ′r∨

(
β′, β

)
eiβx+iγ(β)z (21)

We take incoming field φ− (~ρ) to satisfy (
~∂2 + n2k2

)
φ− (~ρ) = 0 (22)

with n = n (x, z > 0) = constant, it can be written as

φ− (~ρ) =

∫
dβ exp [iβx− iγ (β) z] φ̃− (β) (23)



where γ (β) =
√
n2k2 − β2. In the region z > 0 the reflected/scattered field φ+ (x, z > 0) can be written as

φ+ (x, z) =

∫
dβdβ′ exp [iβx+ iγ (β) z] r∨

(
β, β′

)
φ̃−
(
β′
)

(24)

The fact that we can write φ+ (~ρ) in this form follows from the linearity of the wave equation, Eq. 20. Substitute
the first line of Eq 21 into Eq 20 and use Eq. 15 to get(

~∂2 + k2n (~ρ)
2
) (
φ− (~ρ) + φ+ (~ρ)

)
= 0 (25)

After using Eq. 22, Eq. 15, and the symmetry of G we get

φ+ (~ρ) =

∫
d2ρ′G (~ρ,~ρ′) k2

(
n2 − n (~ρ′)2

)
φ− (~ρ′) (26)

Setting the right hand sides of Eq. 24 and Eq. 26 equal, evaluating both at z = 0+ and letting k2
(
n2 − n (~ρ′)2

)
≡

V (~ρ′) = 0 we have∫
dβdβ′ exp [iβx] r∨

(
β, β′

)
φ̃−
(
β′
)
=

∫
dx′
∫ 0

zL

dz′G (x, 0+,~ρ
′)V (~ρ′)φ− (~ρ′) (27)

Fourier transforming both sides of Eq. 27 and writing φ− (~ρ′) in terms of its Fourier transform gives∫
dβ′r∨

(
β, β′

)
φ̃−
(
β′
)
=

∫
dxdx′

2π

∫ 0

zL

dz′e−iβxG (x, 0+, x
′, z′)V (x′, z′)

∫
dβ′eiβ

′x′−iγ(β′)z′ φ̃−
(
β′
)

=

∫
dβ′

∫
dxdx′

2π

∫ 0

zL

dz′e−iβxG (x, 0+, x
′, z′)V (x′, z′) eiβ

′x′−iγ(β′)z′ φ̃−
(
β′
)
(28)

Since this must hold for arbitrary φ̃− (β) we have

r∨
(
β, β′

)
=

∫
dxdx′

2π

∫ 0

zL

dz′e−iβxG (x, 0+, x
′, z′)V (x′, z′) eiβ

′x′−iγ(β′)z′ (29)

Shifting the position of the scattering object by s in the x direction and use the result given above, Eq 19, for
the corresponding Greens function gives

r∨′
(
β, β′

)
=

∫
dxdx′

2π

∫ 0

zL

dz′e−iβxG (x− s, 0+, x′ − s, z′)V (x′ − s, z′) eiβ
′x′−iγ(β′)z′

=

∫
dxdx′

2π

∫ 0

zL

dz′e−iβ(x+s)G (x, 0+, x
′, z′)V (x′, z′) eiβ

′(x′+s)−iγ(β′)z′

= e−iβsr∨
(
β, β′

)
eiβ

′s (30)

which makes perfect sense.

For TM polarization the Greens function is defined by(
~∂ · 1

n (~ρ)
2
~∂ + k2

)
G (~ρ,~ρ′) = δ (~ρ− ~ρ′) (31)

If we shift the structure in the x direction by s then as for TE polarization we findG′ (~ρ,~ρ′) = G (x− s, z, x′ − s, z′)
satisfies the shifted version of Eq 31 as for the TE case and so the same relation, Eq. 30 holds for TE polarization,
which is what one would expect.

For transmission the same result holds for both polarizations

t∨′
(
β, β′

)
= e−iβst∨

(
β, β′

)
eiβs (32)



5 Test Case: r in terms of G

Test Eq 29 on a case which can be evaluated analytically. Consider the case where the index of refraction is
homogeneous for both z > 0 and z < 0 but with value n1 for z > 0 and n0 for z < 0 as shown in Figure 3.

For TE polarization (electric field in the y direction) Ey ≡ φ satisfies the following boundary conditions at
z = 0

φ1 (x, 0) = φ0 (x, 0)

(∂zφ1)z=0 = (∂zφ0)z=0 (33)

where φ1 (φ0) is the field in the region z > 0 (z < 0) . Since the structure is homogeneous the fields can built out
of plane waves

exp [iβx± iγ` (β) z] (34)

where γ` (β) =
√
n 2
` k

2 − β2 with ` = 0, 1 indicating the z < 0 and z > 0 half-spaces, respectively. Using the
boundary conditions we find that

r∨ (β) = −r∧ (β) = γ1 (β)− γ0 (β)
γ1 (β) + γ0 (β)

t∨ (β) = 1 + r∨ (β) =
2γ1 (β)

γ1 (β) + γ0 (β)

t∧ (β) = 1 + r∧ (β) =
2γ0 (β)

γ1 (β) + γ0 (β)
(35)

Translation invariance in the x direction means the Greens function can be written in the form

G (x− x′, z, z′) =
∫
dβ

2π
ei(β−β

′)xg (β, z, z′) (36)

where g satifies (
∂ 2
z + n (z)

2
k2 − β2

)
g (β, z, z′) = δ (z − z′) (37)

where

n (z) =

{
n1 for z > 0
n0 for z < 0

(38)

Fundamental solutions to (
∂ 2
z + n (z)

2
k2 − β2

)
φ = 0 (39)



which satisfy the boundary conditions with incoming waves from z = +∞ and z = −∞ can be written as

φ+ (β, z) =

{
exp [iβx− iγ1z] + r∨ exp [iβx+ iγ1z] for z > 0

t∨ exp [iβx− iγ0z] for z < 0

φ− (β, z) =

{
t∧ exp [iβx+ iγ1z] for z > 0

exp [iβx+ iγ0z] + r
∧ exp [iβx− iγ0z] for z < 0

(40)

where the + and − superscripts on φ correspond to incoming waves from z = +∞ and z = −∞, respectively.
Arbitrary field configurations can be built out of linear combinations of the φ±. In particular, the Greens function
can be written as

G (x− x′, z, z′) =
∫
dβ

2π
eiβ(x−x

′) θ (z − z′)φ
− (β, z)φ+ (β, z′) + θ (z′ − z)φ+ (β, z)φ− (β, z′)

W
(41)

where θ (X) = 1 for X > 0 and it 0 otherwise, i.e., δ (x) = ∂xθ (x). W is the Wronskian

W (β) =
(
∂−z φ (β, z)

)
φ+ (β, z)−

(
∂+z φ (β, z)

)
φ− (β, z) (42)

= 2iγ1 (β) t
∧ (β)

which for solutions to Eq. 39 is constant in z.

Substituting into Eq. 29 we get

r∨
(
β, β′

)
=

∫
dxdx′

2π

∫ 0

−∞
dz′e−iβx+iβ

′x′−iγ1(β′)z′k2
(
n 2
1 − n 2

0

)
G (x− x′, 0+, z′)

= k2
(
n 2
1 − n 2

0

) ∫ dβ′′

2π

∫
dxdx′

2π

∫ 0

−∞
dz′e−iβx+iβ

′x′−iγ1(β′)z′eiβ
′′(x−x′)g

(
β′′, 0+, z

′)
= k2

(
n 2
1 − n 2

0

) ∫
dβ′′δ

(
β′ − β′′

)
δ
(
β − β′′

) ∫ 0

−∞
dz′e

′−iγ1(β′)z′ t
∧ (β′′) t∨ (β′′) e−iγ0(β′′)z′

2iγ1
(
β′′
)
t∧
(
β′′
)

= k2
(
n 2
1 − n 2

0

)
δ
(
β − β′

) t∨ (β)

2iγ1 (β)

∫ 0

−∞
dz′e

′−i(γ1(β)+γ0(β))z′

= k2
(
n 2
1 − n 2

0

)
δ
(
β − β′

) 1

i (γ1 (β) + γ0 (β))

1

−i (γ1 (β) + γ0 (β))

=
γ1 (β)− γ0 (β)
γ1 (β) + γ0 (β)

δ
(
β − β′

)
= r∨ (β) δ

(
β − β′

)
which is correct, r∨ (β) δ

(
β − β′

)
is the matrix form of r∨ (β). The matrix is diagonal since for reflection off a

planar surface β = β′.

In the above derivation we have used the fact that k2
(
n 2
1 − n 2

0

)
= γ1 (β)

2−γ0 (β)
2
= (γ1 (β)− γ0 (β)) (γ1 (β) + γ0 (β))

and ∫ 0

−∞
dz′e

′−i(γ1(β)+γ0(β))z′ = lim
ε→0

∫ 0

−∞
dz′e

′−i(γ1(β)+γ0(β))z′+εz′

= PV

(
1

−i (γ1 (β) + γ0 (β))

)
− iπδ (γ1 (β) + γ0 (β))

But note that since γ1 (β) + γ0 (β) is never zero we can ignore the delta-function and the principal value (PV )
and just write ∫ 0

−∞
dz′e

′−i(γ1(β)+γ0(β))z′ =
1

−i (γ1 (β) + γ0 (β))
as done above.


