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1 Introduction

This is just a random collection of definitions, standard well known results,
relationships, formulae, etc., from Math and Physics. There is nothing new
except possibly the proof of the Bessel function closure relation. I have not seen
it anywhere else, but no doubt it’s out there somewhere, published long before
I stumbled on this way of proving it myself.
I have tried to use pretty much standard notation throughout. A couple

of standard math symbols that may need definition are: ∀ means "for all" or
sometimes people say "for any" (either way means the same to me), ∈ means
"element of", ∃ means "there exists", "w.r.t." means "with respect to". I use
the symbol "∼" to mean "proportional to" or "scales as".
The word "Consider" will be used quite a bit, so get ready for it. I will often

write out the step-by-step proof of a particular relation in excrutiating detail.
Rather boring and very cluttered and hence awful to look at, but useful in the
end, since it shows the individual steps in the derivation without having to write
it out in words.
NOTE 1: This is a work in progress, I will continue to add to it. Keep track

of the Revision Date above.
NOTE 2: This is not a hardcore math document, i.e., the style is not "the-

orem, proof, example". The level of rigor is that of pretty much any theoretical
physics text.
NOTE 3: The sections are not in any particular order.
NOTE 4: The material included here ranges from some Quantum Field

Theory stuff (energy and momentum conservation coming from time and space
translation invariance), all the way "back" to why a capacitor always stores
only half the energy supplied by the battery, generator or voltage source. Half
is always lost to the resistor no matter how few Ohms it has.This fact is actually
a big problem for computer chip design.
As an example of the "pure" math side, I show why Fourier transforms and

Fourier series coeffi cients are least squares solutions.
Hope it’s useful. Please, if you use anything from it, please reference it.

Thanks!
Comments on notation:
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It is common for physicists to write integrals in the form of an operation on
a function and I will use that notation. That is instead of∫

f (x) dx

which is more or less standard in math texts, I will use the physics way of writing
it ∫

dxf (x)

Integration,
∫
dx, is then acting on the function f (x) .

There are two "delta functions" we will use quite often.
The Kronecker delta function will be written as δK (n,m) or as δK,n,m and

the K will be dropped in expressions where it is obvious the Kronecker delta
is being used. Here n and m, called "indices", are integers covering a specified
range of values. The Kronecker delta function is just the elements of the identity
matrix, δK,n,m = 1 for n = m and is zero otherwise. It appears in matrix
manipulations and summations over given discrete ranges of n and m.
The Dirac delta function will be written as δD (x, y) or as δD (x− y) and

the D will be dropped in expressions where it is obvious the Dirac delta is being
used. Here x and y are continuous variables covering a specified range of values.
The Dirac delta function is effectively the equivalent of the identity matrix but
for integrals. It is defined by

f (x) =

∫
dyδD (x− y) f (y)

for any (nonpathological) function f (x) .

2 Some Background Matrix Stuff

In many places we will use the matrix-vector notation and the "Einstein sum-
mation convention": (doubly) repeated indices are automatically assumed to be
summed over the appropriate range. Example: ordinary matrix multiplication,
indicated here by "·", of matrix M on column vector x to yield column vector
y can be written several different ways

y = M · x

yi =
∑
j

Mi,jxj = Mi,jxj

Here yi is the ith component or element of column vector y, xj is the jth compo-
nent or element of column vector x and Mi,j is the row i and column j element
of matrix M. The sum on j is over the range of values of j. A matrix inverse
will be indicated with superscript "−1" and the transpose by superscript "T".
Hence, for M a square invertible matrix, M−1 ·M = I = the identity matrix
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of the same size as M and xT · y = the "dot" product of x and y. This is the
same as the dot product when x and y are treated as vectors, ~x and ~y, that is
xT · y = ~x · ~y. Just different notation for the same thing.
Functions of matrices are defined by their power series expansion, e.g.,

exp [M ] =

∞∑
n=1

1

n!
Mn =

∞∑
n=1

1

n!
(M ·M · . . . ·M) = lim

p→∞

[(
I +

M

p

)p]
where there are n factors of M in the middle expression and I is the identity
matrix. Proof of the "limp→∞" expression above is in the next section.
NOTE: Since the function of a matrix is defined by its power series, it follows

that if the matrix M is purely diagonal, i.e., all the off diagonal elements are
zero, then any function of M,

f (M) =


f (M1,1) 0 · · · 0

0 f (M2,2)
...

...
. . . 0

0 · · · 0 f (N,N )


That is, for diagonal matrices the function is distributed along the diagnal and
all the off diagonal elements remain 0.

2.1 det [M ] = exp [tr [ln [M ]]]

We will now show that, for M an N ×N matrix.

det [M ] ≡
N∑

i1,k2,···=1

εi1,i2,··· ,iNM1,i1M2,i2 · · ·MN,iN = exp [tr [ln [M ]]]

Here "tr" indicates the trace which is the sum of the diagonal elements, e.g.,
tr[M ] =

∑N
i=1Mi,i, and εa,b,c,··· is the totally antisymmetric "Levi-Civita ten-

sor"

εa,b,c,··· =

 = +1 for a, b, c, · · · an even permutation of 1,2,3, · · ·
= −1 for a, b, c, · · · an odd permutation of 1,2,3, · · ·
= 0 if any of the a, b, c, · · · are equal to each other

We will use the Einstein Summation Convention throughout this entire doc-
ument. Note that in the sum above each summed over index i1, i2, . . . appears
twice and only twice, once on ε and once on M. The Einstein Summation Con-
vention simply drops the summation sign, simplifying the notation, and states
that all doubly repeated indices are understood to be summed over their appro-
priate ranges.
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Two examples: Via the Einstein Summation Convention we have

εi1,i2,··· ,iNM1,i1M2,i2 · · ·MN,iN =

N∑
i1,k2,···=1

εi1,i2,··· ,iNM1,i1M2,i2 · · ·MN,iN

N∑
i=1

Mi,i = Mi,i = tr [M ]

Basically in all matrix expressions, indices appear once and only once when not
summed over, and twice and only twice when summed over. Any expression
where the same index appears three or more times generally, but certainly not
always, indicates that a mistake has been made somewhere.
To proceed, begin by showing that

exp [M ] = lim
p→∞

[(
I +

M

p

)p]
Using the binomial theorem(

I +
M

p

)p
=

p∑
m=0

p!

m! (p−m)!

(
M

p

)m
Ip−m

but obviously Ip−m can be ignored since I is the identity matrix, and we now
have (

I +
M

p

)p
=

p∑
m=0

p!

m! (p−m)!

(
M

p

)m
By definition

p!

(p−m)!
= p (p− 1) (p− 2) · · · (p−m+ 1)

In the limit as p→∞ with m finite

p!

(p−m)!
→ pm

The reason we can consider m finite even though the sum over m runs from 0
up to p is because of the m! in the denominator in the sum: the large m terms
are essentially negligable. Putting this altogether gives

lim
p→∞

(
I +

M

p

)p
=

p∑
m=0

Mm

m!

= exp [M ]

So now consider

det [exp [M ]] = lim
p→∞

det

[(
I +

M

p

)p]
= lim
p→∞

((
det

[(
I +

M

p

)])p)
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where we have used identity det [An] = (det [A])
n
. Note that this identity follows

trivially from "det = exp tr ln".
Noting that the elements of I are Im,n = δm,n = 1 for m = n and are zero

otherwise Here we are obviously dealing with the Kronecker delta and so we
have

det

[(
I +

M

p

)]
= εi1,i2,··· ,iN

(
δ1,i1 +

M1,i1

p

)(
δ2,i2 +

M2,i2

p

)
· · ·
(
δN,iN +

MN,iN

p

)
= εi1,i2,··· ,iN δ1,i1δ2,i2 · · · δN,iN + εi1,i2,··· ,iN

M1,i1

p
δ2,i2 · · · δN,iN

+ εi1,i2,··· ,iN δ1,i1

M2,i2

p
δ3,i3 · · · δN,iN + · · ·+ εi1,i2,··· ,iN δ1,i1δ2,i2 · · · δN−1,iN−1

MN,iN

p

+ terms of order
1

p2

= ε1,2,3,··· ,N + εi1,2,3,··· ,N
M1,i1

p
+ ε1,i2,3··· ,N

M2,i2

p

+ · · ·+ ε1,2,··· ,N−1,iN

MN,iN

p
+ terms of order

1

p2

= 1 +
M1,1

p
+
M2,2

p
+ · · ·+ MN,N

p
+ terms of order

1

p2

= 1 +
tr [M ]

p
+ terms of order

1

p2

Hence we have

det [exp [M ]] = lim
p→∞

[(
1 +

tr [M ]

p

)p]
= exp [tr [M ]]

Replacing M with ln [M ] we have

det [exp [ln [M ]]] = det [M ] = exp [tr [ln [M ]]]

NOTE: "det = exp tr ln" works as well whenM is a differential operator instead
of a matrix in which case δK (· · · ) is replaced with δD (· · · ). Hence it gets used
quite a bit in functional integral approach to quantum field theory.
The above result immediately yields the derivative of det [M ] w.r.t. any one

8



element of M . Consider M →M + ∆M and evaluate, step-by-step

det [M + ∆M ]− det [M ] = exp[tr [ln [M + ∆M ]]− exp [tr [ln [M ]]]

= exp
[
tr
[
ln
[
M
(
I +M−1 ·∆M

)]]]
− exp [tr [ln [M ]]]

= exp
[
tr
[
ln [M ] + ln

[
I +M−1 ·∆M

]]]
− exp [tr [ln [M ]]]

= exp [tr [ln [M ]]]
(
exp

[
tr
[
ln
[
I +M−1 ·∆M

]]]
− 1
)

= det [M ]
(
exp

[
tr
[
ln
[
I +M−1 ·∆M

]]]
− 1
)

For ∆M small expand ln then exp

= det [M ]
(
exp

[
tr
[
M−1 ·∆M

]]
− 1
)

= det [M ] tr
[
M−1 ·∆M

]
For ∆Mi,j = εδa,iδb,j (δ = Kronecker delta) so that ∆M = ε for i = a and
j = b where a and b are particular values of i and j and ∆M = 0 otherwise,
this gives the derivative of det [M ] w.r.t. the particular element Ma,b

d (det [M ])

dMa,b
= lim
ε→0

det [M + ∆M ]− det [M ]

ε

= det [M ] lim
ε→0

tr
[
M−1 ·∆M

]
ε

= det [M ] lim
ε→0

(
M−1

)
i,k∆Mk,i

ε

= det [M ] lim
ε→0

(
M−1

)
i,k
εδa,kδb,i

ε

= det [M ]
(
M−1

)
b,a

2.2 Examples of det = exp tr ln

The fact that the determinant of a matrix equals the exponential of the trace
of the natural logarithm of the matrix may seem very strange, so here are two
examples showing how it works. Note that the trace is key since without it you
would have exp(ln) which is an identity operation.
1. Consider the matrix

M =

(
a b
c d

)
First we have to evaluate ln (M) . To do that separateM into a sum of diagonal
and off diagonal terms and then write it as a product

M =

(
a 0
0 d

)
+

(
0 b
c 0

)
=

(
a 0
0 d

)((
1 0
0 1

)
+

(
0 b/a
c/d 0

))
=

(
a 0
0 d

)(
I +

(
0 b/a
c/d 0

))
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Take "ln" then the trace

ln [M ] = ln

[(
a 0
0 d

)(
I +

(
0 b/a
c/d 0

))]
= ln

[(
a 0
0 d

)]
+ ln

[
I +

(
0 b/a
c/d 0

)]
=

(
ln [a] 0

0 ln [d]

)
−
∞∑
n=1

(−1)
n

n

(
0 b/a
c/d 0

)n
tr [ln [M ]] = ln [a] + ln [d]−

∞∑
n=1

(−1)
n

n
tr
[(

0 b/a
c/d 0

)n]

= ln [ad]−
∞∑
n=1

(−1)
n

n
tr
[(

0 b/a
c/d 0

)n]
We have (

0 b/a
c/d 0

)2

=

(
bc/ad 0

0 bc/ad

)
=
bc

ad
I

and therefore, using even and odd to represent even and odd powers(
0 b/a
c/d 0

)even
=

(
bc

ad

)even/2
I(

0 b/a
c/d 0

)odd
=

(
bc

ad

)(odd−1)/2(
0 b/a
c/d 0

)
Taking the trace gives

tr
[(

0 b/a
c/d 0

)even]
= 2

(
bc

ad

)even/2
tr

[(
0 b/a
c/d 0

)odd]
= 0

Hence, letting even = 2n,

−
∞∑
n=1

(−1)
n

n
tr
[(

0 b/a
c/d 0

)n]
= −

∞∑
n=1

(−1)
2n

2n
2

(
bc

ad

)n
= −

∞∑
n=1

1

n

(
bc

ad

)n
= ln (1− bc/ad)

Putting things altogether

det [M ] = exp [tr [ln [M ]]]

= exp [ln [ad] + ln [1− bc/ad]]

= exp [ln [ad− bc]]
= ad− bc
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2. Consider a matrix M which is the outer product of an N element column
vector u with its Hermitian conjugate, u†, i.e.,

u =


u1

u2

...
uN

 and u† = [u∗1, u
∗
2, · · · , u∗N ]

so that

M = uu† =


u1

u2

...
uN

 [u∗1, u
∗
2, · · · , u∗N ]

=


u1u
∗
1 u1u

∗
2 · · · u1u

∗
N

u2u
∗
1 u2u

∗
2 · · · u2u

∗
N

...
. . .

uNu
∗
1 uNu

∗
2 · · · uNu

∗
N


Take the inner product of u† with u to be X, i.e.,

u† · u = X

where "·" is matrix multiplication. We now have

M ·M = uu† · uu†

= u
(
u† · u

)
u†

= Xuu†

= XM

From this is follows that
Mn = Xn−1M

Also

tr [M ] = tr
[
uu†
]

=

N∑
n=1

unu
†
n = X

Determine the eigenvalues of M.
To do that we need to find the values of λ which satisfy

0 = det [λI −M ]

Here I is the N ×N identity matrix. For an N ×N matrix there are N values
of λ, assuming at least one is nonzero we can rewrite the above equation as

0 = det

[
λ

(
I − M

λ

)]
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Using the standard property of determinants det [cA] = cN det [A] where c is a
number and A is any N ×N matrix we have

0 = λN det

[
I − M

λ

]
Sidebar : Note that we can prove det [cA] = cN det [A] very simply using "det =
exp tr ln":

det [cA] = exp [tr [ln [cA]]]

= exp [tr [ln [cI] + ln [A]]]

= exp [ln [c] tr [I] + tr [ln [A]]]

= exp [ln [c]N + tr [ln [A]]]

= cN det [A]

End Sidebar :
The λN factor makes it appear that there are N "λ = 0" solutions, but

before jumping to that conclusion, evaluate the remaining det using "exp tr ln".

det

[
I − M

λ

]
= exp

[
tr
[
ln

[
I − M

λ

]]]
= exp

[
tr

[
−
∞∑
n=1

Mn

nλn

]]

= exp

[
tr

[
−
∞∑
n=1

Xn−1

nλn
M

]]

= exp

[
−
∞∑
n=1

Xn−1

nλn
tr [M ]

]

= exp

[
−
∞∑
n=1

Xn

nλn

]

= exp

[
ln

[
1− X

λ

]]
= 1− X

λ

And so finally we have

0 = det [λI −M ]

= λN
(

1− X

λ

)
= λN−1 (λ−X)

Hence M has N − 1 "λ = 0” eigenvalues with the single nonzero eigenvalue
being λ = X = tr[M ] .

12



3 Fourier Stuff

Consider the sum

fN (x) =

+N∑
n=−N

exp [in2πx/P ]

where i =
√
−1 and x and P are real valued. By definition fN (x) is periodic

fN (x) = fN (x+ P ) ∀x

Integrate over one period and normalize by the period

1

P

∫ +P/2

−P/2
dxfN (x) =

+N∑
n=−N

1

P

∫ +P/2

−P/2
dx exp [in2πx/P ] = 1

where we have used the fact that

1

P

∫ +P/2

−P/2
dx exp [in2πx/P ] = δK (n, 0) =

{
1 for n = 0
0 for n 6= 0

δK is the Kronecker delta function, δK (u, v) = 1 for u = v and is zero otherwise.
The sum is finite so can switch it with the integral. The important point in the
above result is that it is independent of N.
The sum can be evaluated exactly

fN (x) =
sin
[(
N + 1

2

)
2π xP

]
sin
[
π xP
] =

sin
[
(2N + 1)π xP

]
sin
[
π xP
]

The peak value in the range −P/2 to +P/2 is

fN (0) = 2N + 1

as expected.
The position of the first zero is

sin
[
(2N + 1)π

x

P

]
= sin [±π] = 0

⇒ x = ± P

2N + 1

With increasing N the peak value of fN (x) increases, its width decreases and
the integral remains 1 for all N. Hence in the range −P/2 to +P/2 we have

fN→∞ (x) = δD (x) = Dirac delta function

(The subscript D on δ is there to distinguish it from the Kronecker delta, δK .
Properties of the Dirac delta function are discussed below.) Accounting for pe-
riodicity we have

fN→∞ (x) =

+∞∑
n=−∞

δD (x− nP ) ∀x

13



3.1 Deriving Fourier Series

Consider a periodic function g (x),

g (x) = g (x+ P ) ∀x

Assuming g (x) is nonpathological (analytic) we can Taylor expand the right
hand side

g (x+ P ) = g (x) + ∂xg (x)P +
1

2
∂2
xg (x)P 2 + · · ·

=

∞∑
n=0

1

n!
Pn∂nx g (x)

= exp [P∂x] g (x)

In the last step we have used the standard power series representation of the
exponential.

∞∑
n=0

1

n!
(P∂x)

n
= exp [P∂x]

Using periodicity, g (x+ P ) = g (x) , gives

0 = ∂xg (x)P +
1

2
∂2
xg (x)P 2 + · · · =

∞∑
n=1

1

n!
∂nx g (x)Pn

This is a linear homogeneous differential equation with constant coeffi cients and
so the general form of the solution (assuming no degeneracy in the values of λ)
is

g (x) = exp [λx]

Substituting this in the differential equation gives

0 = λP +
1

2
(λP )

2
+ · · · = exp [λP ]− 1

or

exp [λP ] = 1

Hence
λ = i

n2π

P

where i =
√
−1 and n = all integers (positive, negative and zero). The dif-

ferential equation is infinite order and therefore requires an infinite number of
coeffi cients. Hence the general form for g (x) is

g (x) =

+∞∑
n=−∞

an exp
[
in2π

x

P

]

14



which is the Fourier series representation of g (x). Given g (x), the an are given
by

an =
1

P

∫ +P/2

−P/2
dxg (x) exp

[
−in2π

x

P

]
which follows directly upon substituting the Fourier series representation of g (x)
in the above integration, exchanging summation and integration (generally valid
in real world problems) and doing the integral.

3.2 Fourier transforms from Fourier series

Consider

1

P

∞∑
n=−∞

exp
[
in2π

x

P

]
=

+∞∑
n=−∞

δD (x− nP )

=
2π

P

+∞∑
n=−∞

δD

(
2π

x

P
− n2π

)
or, to write it in a different form, let

θ = 2π
x

P

and we get

1

2π

+∞∑
n=−∞

exp [inθ] =

+∞∑
n=−∞

δD (θ − n2π)

Note

lim
P→∞

1

P

∞∑
n=−∞

exp
[
in2π

x

P

]
=

1

2π
lim
P→∞

+∞∑
n=−∞

(
2π

P

)
exp

[
in

(
2π

P

)
x

]

=
1

2π

∫ +∞

−∞
dβ exp [iβx]

= δD (β)

where we used ∆β = 2π/P → dβ and n2π/P → β for P → ∞ and in the last
step since P → ∞ only the n = 0 term contributes to

∑
n δD (x− nP ) . Using
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this same approach we have

g (x) = lim
P→∞

+∞∑
n=−∞

an exp
[
in2π

x

P

]
= lim
P→∞

+∞∑
n=−∞

2π

P

an
2π/P

exp
[
in2π

x

P

]
= lim
P→∞

+∞∑
n=−∞

∆βa (n∆β) exp [in∆βx]

=

∫ +∞

−∞
dβa (β) exp [iβx]

which is the Fourier transform.
NOTE: We needed to define

a (n∆β) =
an

2π/P
=

an
∆β

because a (β) needs to be a "density", i.e., it has to have (units of g (x))/(units
of β) which is exactly what is needed to have (units of g (x)) on both sides of
the equation.

4 Dirac Delta Function

The Dirac delta function δD (x) is "defined" as

δD (x) =

{
∞ for x = 0
0 for x 6= 0

with the property that ∫
dxδD (x) = 1

as long the the range of integration includes x = 0.
This is actually not valid way to define an ordinary function and so δD (x)

must be thought of as the limit of an ordinary function.
For example a useful representation of the Dirac delta function is the limit

of a Gaussian with the root-mean-square width σ, which integrates to 1 over
the range −∞ < x < +∞, as σ → 0,

δD (x) = lim
σ→0

1√
2πσ2

exp

[
− x2

2σ2

]
Integrating gives ∫ +∞

−∞
dx

1√
2πσ2

exp

[
− x2

2σ2

]
= 1
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independent of the value of σ. The reason we had to integrate from −∞ to +∞
is the Gaussian is nonzero over that range for any finite value of σ.
Another representation of δD (x) that is strictly 0 outside a finite range is

δD (x) =

{
1
2ε for − ε ≤ x ≤ ε

0 otherwise

which obviously integrates to 1.
There are many other useful representations. Perhaps one of the most useful

is the Fourier representation

δD (x) =

∫ +∞

−∞

dβ

2π
eiβx =

∫ +∞

−∞

dβ

2π
e−iβx

where the second equality follows from the change of integration variable β →
−β. This is derived below in the section on Fourier Stuff.

4.1 Properties of Dirac Delta Functions

For any nonpathological f (x) we have
1. ∫ b

a

dxf (x) δD (x− x0) =

{
f (x0) for a < x0 < b

0 otherwise

This can be shown by first noting that δD (x− x0) is nonzero only for x = x0

and so we can simply evaluate f at x0 in which case it comes out of the integral
leaving

∫
dxδD (x− x0) = 1 which follows trivially after making the change of

integration variable x→ x+x0. For x0 equal to either a or b nominally you get
f (x0) /2 because only half the delta function is inside the range of integration
but this has to be verified in each case.
2. ∫ b

a

dxf (x) δD (c× (x− x0)) =

{
f(x0)
|c| for a < x0 < b

0 otherwise

where as usual |· · · | means absolute value and c is a constant. This can be
shown in various ways. For example, let x = x′ + x0 then let x′′ = cx′ which
gives ∫ b

a

dxf (x) δD (c× (x− x0)) =
1

c

∫ c(b−xo)

c(a−x0)

dxf

(
x′′

c
+ x0

)
δ (x′′)

=
f (x0)

c

∫ c(b−xo)

c(a−x0)

dxδ (x′′)

Now if c > 0 then
∫ c(b−xo)

c(a−x0)
dxδ (x′′) = 1. Remember we have assumed that

a < x0 < b and so a− x0 < 0 < b− x0. But if c < 0 then we have to swap the
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limits and we have
∫ c(a−xo)

c(b−x0)
dxδ (x′′) = −1 and therefore the 1/c factor becomes

1/ |c|. Thus
δD (c× (x− x0)) =

1

|c|δD (x− x0)

3. ∫
dxf (x) (δD (g (x))) =

∑
n

f (xn)∣∣∂xg (x)x=xn

∣∣
where g (xn) = 0

i.e., the xn are the roots of g (x) . This identity can be proven by noting first
that the only contributions to the integral will come from the points where
x = xn. Separating the integral into a sum of integrals with integration ranges
individually enclosing each of the xn we have∫

dxf (x) (δD (g (x))) =
∑
n

∫ bn

an

dxf (x) δD (g (x))

with an < xn < bn. Let x = x′ + xn in each integral then Taylor expand
g (x+ xn) = g (xn) + ∂xg (x)x=xn

x+ · · · = 0 + ∂xg (x)x=xn
x+ · · · . The higher

order terms "+ · · · " won’t contribute because of the infinitely thin width of the
delta function and so we have∫

dxf (x) (δD (g (x))) =
∑
n

∫ bn−xn

an−xn
dxf (x+ xn) δD (g (x+ xn))

=
∑
n

∫ bn−xn

an−xn
dxf (x+ xn) δD

((
∂xg (x)x=xn

)
× x
)

=
∑
n

1∣∣∂xg (x)x=xn

∣∣ ∫ bn−xn

an−xn
dxf (x+ xn) δD (x)

=
∑
n

f (xn)∣∣∂xg (x)x=xn

∣∣
where we have used the identity in 2. above in the next to last step.

5 Gaussian Integral

To integrate the Gaussian exp
[
−x2

]
over the range −∞ to +∞ write the inte-

gral as the squareroot of the square of the integral, i.e.,∫ +∞

−∞
dxe−x

2

=

√(∫ +∞

−∞
dxe−x2

)2

which is valid because exp
[
−x2

]
≥ 0 ∀x, and so the integral is positive. Rewrit-

ing the product of the integrals as a double integral and switching to polar
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coordinates gives∫ +∞

−∞
dxe−x

2

=

√∫ +∞

−∞
dxdye−(x2+y2)

=

√∫ 2π

0

dθ

∫ ∞
0

drre−r2

=

√
2π

∫ ∞
0

dr

(
−1

2
∂re−r

2

)
=

√
−π
(
e−∞2 − 1

)
=
√
π

To integrate exp
[
−ax2 + bx

]
complete the square in the exponent and make

the appropriate change of variables and you get∫ +∞

−∞
dx exp

[
−ax2 + bx

]
=

√
π

a
exp

[
b2

4a

]
This works for a and b having complex values, as long as Re [a] > 0. The
limit Re [a]→ 0 can be taken after evaluating the integral. Hence we can write
(changing notation a bit)∫ +∞

−∞
dx exp

[
−iax2 + ibx

]
=

√
π

ia
exp

[
− b2

4ia

]
where i =

√
−1.

6 Inequalities

Let ~x, ~y, · · · be vectors in a real valued vector space V with inner or dot product
"·". ~x, ~y, · · · can be ordinary vectors in a D dimensional Euclidean space or
functions in a Hilbert space. Because the vectors are members of a real valued
vector space we have

|~x|2 ≡ ~x · ~x ≥ 0 for any ~x ∈ V

Note with this definition the "length" of ~x is |~x| =
√
~x · ~x

6.0.1 Cauchy-Schwarz

Consider the combination

~y − ~y · ~x
|~x|

~x

|~x|
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This is ~y with the part of ~y lying in the ~x direction subtracted off. Since the
square of any vector in the space is greater than or equal to zero we have∣∣∣∣~y − ~y · ~x

|~x|
~x

|~x|

∣∣∣∣2 =

(
~y − ~y · ~x

|~x|
~x

|~x|

)
·
(
~y − ~y · ~x

|~x|
~x

|~x|

)
≥ 0

Expanding and rearranging gives the Cauchy-Schwarz inequality

|~x| |~y| ≥ ~x · ~y : Cauchy-Schwarz Inequality

6.0.2 Triangle

Noting that

|~x+ ~y|2 = |~x|2 + |~y|2 + 2~x · ~y
and

(|~x|+ |~y|)2
= |~x|2 + |~y|2 + 2 |~x| |~y|

then using the Cauchy-Schwarz inequality and taking a square root gives the
Triangle Inequality

|~x|+ |~y| ≥ |~x+ ~y| : Triangle Inequality

7 Probability Stuff

7.1 Basic definition

Let
~X = (X1, X2, · · · , XN )

be a set or string of N random variables Xn and let

P ~X

(
~x | ~θ

)
be the probability density or distribution for ~X to take the value ~x given the
parameter values ~θ. The vector notation is purely for convenience, ~x and ~θ can
simply be thought of as lists or strings of values, that is

(x1, x2, · · · , xN ) ≡ ~x

is a set or string of N values and

(θ1, θ2, · · · , θM ) ≡ ~θ

is a set or string of M parameter values. There is no immediate requirement
that ~x or ~θ are members of a particular vector space. In general all the xn and
all the θm values are real.
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NOTE: P ~X
(
~x | ~θ

)
is generally referred to in the literature as the "joint"

probability distribution for the values of x1,x2, x3, · · · , xN .
The probability that the random variable, or string of variables

X1, X2, · · · , XN = ~X

lies within the infinitesimal volume dv = dx1dx2 · · · dxN centered at ~x given the
string of values in ~θ is

P ~X

(
~x | ~θ

)
dx1dx2 · · · dxN = P

(
~x | ~θ

)
dv

Note: Stating that P ~X

(
~x | ~θ

)
is a probability "density" makes the implicit

assumption that all the xn values are continuous. We will assume all the θm
values are continuous as well. In order for P ~X

(
~x | ~θ

)
to be a probability density

its integral over all relevant ranges of ~x must be finite and should always be
normalized to 1, or to 100 % if desired, i.e.

Normalization:
∫
dv P ~X

(
~x
∣∣∣ ~θ∣∣∣) = 1 Always

A discrete probability distribution is where, for example, the values of a
single random variable X can take only particular discrete values. For example

if the probability that X can take the particular value xn is pn
(
~θ
)
where n

labels the possible values of X then the probability distribution for X to take
the value xn is

PX (n) =
∑
m

pm

(
~θ
)
δm,n

where m ranges over all the possible values of n and δn,m is the Kronecker
delta, i.e., the elements of the identity matrix, δm,n = 1 for m = n and is zero
otherwise. Normalization for a discrete probability distribution takes the form

Normalization:
∑
n

PX (n) =
∑
n,m

pm

(
~θ
)
δm,n =

∑
m

pm

(
~θ
)

= 1 Always

7.2 Expectation values

The expectation values of the Xn are defined by〈
F
(
~X
)〉

= E
[
F
(
~X
)]

=

∫
dvF (~x)PX

(
~x | ~θ

)
where the 〈· · · 〉 = E [· · · ] is just diffferent notation for the same thing. Both
ways of writing the expectation value are commonly used in the literature.
As a specifict example consider a single random variable X, the mean or

average value and the mean square variation, also called the variance are given
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by

mean or average = 〈X〉 = E [X] =

∫
dx xPX

(
x | ~θ

)
mean square or variance =

〈
(X − 〈X〉)2

〉
=

∫
dx (x− 〈X〉)2

PX

(
x | ~θ

)
=

∫
dx

(
x2 − 2x 〈X〉+ 〈X〉2

)
PX

(
x | ~θ

)
=

∫
dx x2PX

(
x | ~θ

)
− 2 〈X〉

∫
dx xPX

(
x | ~θ

)
+ 〈X〉2

∫
dx P

(
x | ~θ

)
=
〈
x2
〉
− 〈x〉2

7.2.1 Examples

Gaussian Distribution The Gaussian distribution for a single continuous
variable X is given by

PX (x|θ1 = µ, θ2 = σ) =
1√

2πσ2
exp

[
− (x− µ)

2

2σ2

]
where

θ1 = µ = the mean value = 〈X〉

θ2 = σ = the root mean square value (RMS) =
〈(
X − 〈X〉2

)〉
=
〈
X2
〉
− 〈X〉2

So the Gaussian is a two parameter distribution, θ1 = µ and θ2 = σ.
The Gaussian distribution is properly normalized since

1√
2πσ2

∫
dx exp

[
− (x− µ)

2σ2

]
= 1

Poisson Distribution The Posson distribution which is derived below is

PX (n | θ1 = 〈X〉) =
〈X〉n

n!
e−〈X〉

Here X can take all integer values 0, 1, 2, 3, · · · , and PX (n,N) is the probability
of getting the integer n when the mean value of X is given by 〈X〉 . NOTE: The
Poisson probability distribution has only a single parameter, the average value
θ1 = 〈X〉 .
The Poisson distribution is properly normalized since
∞∑
n=0

〈X〉n

n!
exp [−〈X〉] = exp [−〈X〉]

∞∑
n=0

〈X〉n

n!
= exp [−〈X〉] exp [〈X〉] = 1
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Calculating

∞∑
n=0

nPX (n | 〈X〉) = 〈X〉 = the mean or average value

∞∑
n=0

(n− 〈X〉)2
PX (n | 〈X〉) = 〈X〉 = the mean square variation or variance = σ2

For a Poisson distribution σ = square root of the mean number 〈X〉 .

7.3 Independent Identically Distributed (i.i.d.) Random
Variables

In the joint probability distribution P ~X

(
~X | ~θ

)
if the probability for any one

Xn taking a given value is completely independent or uncorrelated with the
values of any of the other Xn then the joint probability distribution factorized,
i.e., it takes the form

P ~X

(
~x | ~θ

)
= PX1

(
x1 | ~θ1

)
PX2

(
x2 | ~θ2

)
· · ·PXN

(
xN | ~θN

)
Now if further ~θ1 = ~θ2 = · · ·~θN ≡ ~θ and all the functions PX1

, PX2
, · · · , PXN ≡

PX are the same, e.g. all the same Gaussian or all the same Poisson then we
have

P ~X

(
~x | ~θ

)
= PX

(
x1 | ~θ

)
PX

(
x2 | ~θ

)
· · ·PX

(
xN | ~θ

)
= Idependent Identitically Distributed ("i.i.d.")

Also referred to a "homoscedastic"

7.4 Data Analysis for i.i.d additive noise

Consider measuring the value of some single parameter or variable x which is
corrupted by additive "i.i.d" noise ε, that is, each measured value of x, xMeasured

is actually the true value xTrue plus random noise ε

xMeasured = xTrue + ε

with the actual values of ε in each measurement being totally uncorrelated with
one another.
To simplify the notation we will write

xMeasured ≡M
xTrue ≡ T

or

M = T + ε
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To be specific take the values of ε to follow a zero mean Gaussian distribu-
tion, that is we have (again simplifying notation by writing P (ε) instead of
PX (ε | θ = σ) )

P (ε) =
1√

2πσ2
exp

[
− ε

2

σ2

]
For n = 1 to N measurements since the value of ε in any measurement is
completely uncorrelated with the value in any other measurement we have the
joint probability distribution, i.e., the probability to get ε1 for the noise in the
first measurement, ε2 for the noise in the second and so on, is given by

Pjoint (ε1, ε2, · · · , εN ) ≡ Pjoint (~ε) =
1

(2πσ2)
N/2

exp

[
−

N∑
n=1

ε2
n

2σ2

]

and the value of the nth measurement is

Mn = T + εn

The expectation value of difference between the measured value and the true
value for any single measurement is

〈Mn − T 〉 = 〈εn〉 =

∫
dNεεnPjoint (~ε) = 0

Although "on average" we might expect get zero, the expected variation from
0, i.e., the square root of the variance is√〈

(Mn − T )
2
〉

=

(∫
dnεε2

nPjoint (~ε)

)1/2

= σ

and the probability of having measurement Mn lie within a range T −∆/2 to
T + ∆/2 with ∆� σ is given, from the Gaussian distribution by

p ' 1√
2π

∆

σ
� 1

As we all know the "best" thing to do is to take multiple measurements
and average to "beat down the noise". Taking the average is the Maximum
Likelihood or Least Squares solution as discussed below. Define the average as

A =
1

N

N∑
n=1

Mn

=
1

N

N∑
n=1

(T + εn)

= T +
1

N

N∑
n=1

εn
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Again computing the expectation value of A− T we have

〈A− T 〉 =
1

N

N∑
n=1

〈εn〉 = 0

so still "on average" we expect to get 〈A− T 〉 = 0. But now compute the
probability of the measured average value A to lie with the range T −∆/2 to
T + ∆/2 in the same was as before, evaluate the expected root mean square

difference σA between A and T,

√〈
(A− T )

2
〉

σA =

√〈
(A− T )

2
〉

=

(
1

N2

N∑
n,m=1

〈εnεm〉
)1/2

For zero mean i.i.d distributed εn we have

〈εnεm〉 =

{
σ2 for n = m
0 for n 6= m

= σ2δn,m

and so

σA =

√〈
(A− T )

2
〉

=
σ√
N

As shown in the probability mapping section below, if each measured value
follows a Gaussian probability distribution then the average of the measured
values also follows a Gaussian probability distribution but with σ for a single
measurement replaced by σ/

√
N for the root mean square variation of the av-

erage of the measurements. Also, for any i.i.d. case in the limit where N � 1
the central limit theorem proved below shows that the probability distribution
for the average for N large asymptotes to a Gaussian. Hence either way, the
probability of measuring A to be within T −∆/2 and T + ∆/2 with ∆ � σ is
given by

pA '
√
N

1√
2π

∆

σ

which is
√
N times greater than for a single measurement. Tthis is why you use

many measurements to compute far fewer values, because it "beats down the
noise".

7.5 Poisson → Gaussian for large 〈X〉
In the Poisson distribution let

n = 〈X〉+ ∆n

we have

PX (n | 〈X〉) =
〈X〉〈X〉+∆n

(〈X〉+ ∆n)!
e−〈X〉
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The Stirling approximation for the factorial of a large number, say L, is

L! '
(
L

e

)L√
2πL

where e = e1 = 2.71828 · · · . Substituting the Stirling approximation with L =
〈X〉 + ∆n into the Poisson distribution above and putting all the 〈X〉 + ∆n
terms into the exponent gives

PX (n | 〈X〉 � 1) ' 1√
2π

exp

[
(〈X〉+ ∆n) ln (〈X〉)− (〈X〉+ ∆n) ln (〈X〉+ ∆n)

+ 〈X〉+ ∆n− 1
2 ln (〈X〉+ ∆n)− 〈X〉

]
' 1√

2π
exp

[
−
(
〈X〉+ ∆n+

1

2

)
ln

(
1 +

∆n

〈X〉

)
+ ∆n− 1

2
ln (〈X〉)

]
' 1√

2π 〈X〉
exp

[
−
(
〈X〉+ ∆n+

1

2

)
ln

(
1 +

∆n

〈X〉

)]
Taylor expand exponent to 2nd order in ∆n

' 1√
2π 〈X〉

exp

[
− ∆n

2 〈X〉 + (1− 2 〈X〉) ∆n2

4 〈X〉2

]
But for 〈X〉 large, 1 // 〈X〉2 is much smaller than 1/ 〈X〉
Drop1/ 〈X〉2 term

' 1√
2π 〈X〉

exp

[
−∆n2 + ∆n

2 〈X〉

]
The peak of this approximation to PX (n | 〈X〉 � 1) occurs at

∂

∂∆n

(
(∆n)

2
+ ∆n

)
= 0 → ∆n = −1

2

Shift ∆n by 1/2, i.e. let

∆n′ = ∆n− 1

2
= n− 〈X〉 − 1

2

With this change of variables we have

PX (n | 〈X〉 � 1) ' 1√
2π 〈X〉

exp

[
− (∆n′)

2

2 〈X〉 +
1

8 〈X〉

]

' e1/8N 1√
2π 〈X〉

exp

[
− (n− 〈X〉 − 1/2)

2 〈X〉

]
And so we get a Gaussian with an extra factor of exp [1/8 〈X〉] ' 1+1/8 〈X〉 ∼ 1
for 〈X〉 � 1. This factor occurs because of the approximations that have been
made but if we set it to 1 then we a standard properly normalized Gaussian
distribution

1√
2π 〈X〉

exp

[
− (n− 〈X〉 − 1/2)

2 〈X〉

]
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where

Gaussian σ =
√
N

Gaussian peak position = N + 1/2

7.6 Derivation of Poisson Distribution

Consider the case where the probability to get one count (on say a photodetector
for example) in some short time dt is given by

pdt

where p is a constant value. Also assume that the probability to get 2 or more
counts in a time dt is negligible compare to pdt. The probability of getting n
counts in the total time from t = 0 to t = T, P (n, T ) is the sum of two terms.
NOTE: Here T is a time, not be confused with the mean number of counts

N above.
The first term is the probability to get n counts in the time t = 0 to T − dt

and zero counts from T − dt to T which is P (n, T − dt) (1− pdt). The second
term is the probability of getting n− 1 counts in the time t = 0 to T − dt and
1 count in the time T − dt to T which is given by P (n− 1, T − dt) pdt. Hence
we have

P (n, T ) = P (n, T − dt) (1− pdt) + P (n− 1, T − dt) pdt

Expanding to first order in dt gives a coupled set of first order linear differential
equations for P (n, T )

P (n, T ) = P (n, T )− ∂

∂T
P (n, T ) dt− P (n, T ) pdt+ P (n− 1, T ) pdt

or

∂

∂T
P (n, T ) = p (P (n− 1, T )− P (n, T )) for n ≥ 1

∂

∂T
P (0, T ) = −pP (0, T ) for n = 0

Since for T = 0 there are zero counts we have the initial conditions

P (n, 0) = 0 for n ≥ 1

P (0, 0) = 1 for n = 0

There are various ways to solve this set of equations. The most straightforward
is to solve the n = 0 equation for P (0, T ), then substitute that solution into
the n = 1 equation and solve for P (1, T ) and so on. There is also an elegantly
obvious solution if the set of equations are written in matrix form(see below).
In any case the solution is

P (n, T ) =
(pT )

n

n!
exp [−pT ]
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which, upon comparing with P (n,N) given above shows that

〈X〉 = pT

and so we can write

P (n, T )→ P (n) =
〈X〉n

n!
exp [−〈X〉]

7.6.1 Matrix Solution

Define the (infinite length) column vector

P (T ) =


P (0, T )
P (1, T )
P (2, T )

...


and the (infinite × infinite) matrix

G =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...
...
...
...
. . .


then the set of differential equations above for P (n, T ) can be combined into
the matrix equation

∂

∂T
P (T ) = −pP (T ) + pGP (T ) = −p (I −G)P (T )

where I is the (infinite × infinite) identity matrix. The initial conditions become

P (T = 0) =


1
0
0
...


Since G is independent of T the solution to the matrix form of the differential
equations for P (n, T ) is simply

P (T ) = exp [−p (I −G)T ]P (0)

= exp [−pT ] exp [GpT ]P (0)

Using exp [GpT ] =
∑∞
n=0 (GpT )

n
/n! and comparing components on both sides

yields the standard solution for P (n, T ) given above, the Poisson distribution.
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7.7 Characteristic Function

For a continuous variable x the "characteristic function" Z (β) of a (properly
normalized) probability distribution (density) PX (x) is the Fourier transform
of PX (x) which is also the expectation value of of exp [iβx] ,

Z (β) =

∫
dxPX (x) exp [−iβx] = 〈exp [−iβx]〉 :Characteristic function

It follows from this that all the moments of PX (x) can be found simply by
taking derivatives of Z (β) with respect to β, including appropriate factors of i,
and then setting β = 0

Z (β) |β=0 = 〈exp [0]〉 = 〈1〉 = 1(
i
∂

∂β
Z (β)

)
|β=0 = 〈x exp [−iβx]〉 |β=0 = 〈x〉

and in general((
i
∂

∂β

)n
Z (β)

)
|β=0 = 〈xn exp [−iβx]〉 |β=0 = 〈xn〉

Or to write this another way

Z (β) =

∫
dxPX (x) exp [−iβx]

=

∞∑
n=0

(−iβ)
n

n!

∫
dxPX (x)xn

=

∞∑
n=0

(−iβ)
n

n!
〈xn〉

= 1− iβ 〈x〉 − β2

2

〈
x2
〉

+
iβ3

3!

〈
x3
〉

+ · · ·

The same thing can be done in the discrete case using Fourier series.
The characteristic function always exists mathematically since probability

densities by definition are always normalizable, i.e., their integral over all x can
normalized to unity. .

7.8 Maximum Likelihood

What is a good, nominally the best, way to use measured data to determine the
values of various parameters? The answer is Maximum likelihood is generally,
but not always, the best.
Given the probabilty distribution for a x given the value of a parameter θ

PX (x | θ)

the likelihood function is defined as

L (θ | k) = PX (k | θ)
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where
k = the measured or known value of x

The idea is that for any given k the most probable or highest likelihood value
for θ is the one that make PX (x | θ) a maximum or equivalently maximizes
L (θ | k) . Hence the "Maximum likelihood" value for θ, θML, is the one for
which

∂

∂θ
L (θ | k)

∣∣∣∣
θ=θML

= 0

In many cases it is more convenient to work with the logarithm of the likelihood
function and so often one sees

∂

∂θ
ln [L (θ | k)]

∣∣∣∣
θ=θML

= 0

Generally there must be at least as many values as there are parameters and
so in general Maximum likelihood takes the form

~∂θ ln
[
L
(
~θ | ~k

)]∣∣∣
~θ=~θML

= 0

where ~θ just indicates a string or list of parameters (θ1, θ2, · · · ) and ~k indicates
a list or string of data values (k1, k2, · · · ) .
Note that nominally L (θ | k) is not normalized w.r t. θ and so L (θ | k) is

not directly the probability distribution for θ given k.
In the next section we show that for uncorrelated Gaussian noise Maximum

likelihood is equivalent to Least Squares.

7.9 Least Squares

7.9.1 Maximum likelihood and Least Squares

In this section we show how Maximum likelihood for measurments corrupted by
additive Gaussian uncorrelated or "white" noise leads to least squares first for
a single parameter and then for a set of parameters with correlated noise, i.e,
"non-white" noise.

Single Parameter Gaussian White Noise Consider making N measure-
ments of a variable or parameter θ where each measurement is corrupted by
additive zero-mean noise ε with the same rms or σ width Gaussian distribution.
That is, each measured value

xn = θ + εn

where the joint probability distribution for the εn values is

PJoint (ε1, ε2, · · · , εN ) =
1

(2πσ2)
N/2

exp

[
−

N∑
n−1

ε2
n

2σ2

]
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Since εn = xn−θ, the joint probability distribution for the measurements given
θ is given by

PJoint (x1, x2, · · · , xN | θ) =
1

(2πσ2)
N/2

exp

[
−

N∑
n−1

(xn − θ)2

2σ2

]
Substituting actual measured values or known values k1, k2, · · · for x1, x2, · · ·
gives for the natural log of the likelihood function

ln [L (θ | k1, k2, · · · , kN )] = −
N∑
n−1

(kn − θ)2

2σ2
− N

2
ln
[
2πσ2

]
Taking the derivative w.r.t. θ and setting it equal to zero is obviously equivalent
to doing Least Squares (LS) on the set of values (kn − θ) which gives, after some
algebra, the Maximum likelihood solution

θML =
1

N

N∑
n=1

kn = θLS in this case

The point here is that Least Squares is the Maximum likelihood solution for the
average value of a parameter or variable corrupted by additive uncorrelated,
i.e., "white", Gaussian distributed noise.

Multiparameter Corrlated Gaussian Noise Consider a set of N variables
or parameters θ = (θ1, θ2, · · · , θN ) which are linearly related to a set of N
measureable quantities x = (x1, x2, · · · , xM ) by a given know matrix A where
M ≥ N. Each xm could be different type of measured quantity or some could
be repeated measurements of the same quantity. Treating θ and x as column
vectors and using "·" to indicate matrix multiplication the relation between x
and θ can be written as

x = A · θ
or

xm = Am,nθn

where we are using the "Einstein summation convention".
Suppose the measurements of the elements of x are corrupted by additive

zero-mean Gaussian distributed noise ε = (ε1, ε2, · · · , εM ) with a specified co-
variance matrix C, then, treating ε as a column vector, the probability distrib-
ution for the εm is given by

P (ε) = P (ε1,ε2, · · · , εM ) =
1

(2π)
M/2

√
det [C]

exp

[
−1

2
εT · C−1 · ε

]
The covariance matrix is defined as the expectation value of the product of two
of the εm,

〈εpεq〉 ≡
∫
dMεεpεqP (ε)
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Direct evaluation the integral gives

Cp,q = 〈εpεq〉

Note that since 〈εpεq〉 = 〈εqεp〉, C and hence C−1 are both symmetric matrices:

CT = C and
(
C−1

)T
= C−1.

Accounting for the additive noise the measured data or known data k is
given by

k = x+ ε

or

km = xm + εm

Letting x = A·θ, solving for ε and substituting it into P (ε) we get the likelihood
function

P (k −A · θ) = L (θ | k)

=
1

(2π)
M/2

√
det [C]

exp

[
−1

2
(k −A · θ)T · C−1 · (k −A · θ)

]
and so

ln [L (θ | k)] = −1

2
(k −A · θ)T · C−1 · (k −A · θ)− 1

2
det [C]− M

2
ln (2π)

Looking at the first it is clear that minimizing ln [L (θ | k)] w.r.t. θ is equiva-
lent to performing least squares on (k −A · θ)T · C−1 · (k −A · θ). Taking the
derivative w.r.t. θn, using the fact C−1 is a symmetric matrix and and setting
the result to zero for θ = θML gives

AT · C−1 · (k −A · θML) = 0

Rearranging gives
AT · C−1 ·A · θML = AT · C−1 · k

AT · A is a square matrix and assuming it is invertible we have finally for the
Maximum likelihood solution (often called the Maximum likelihood Estimate =
MLE)

θML =
(
AT · C−1 ·A

)−1 ·AT · C−1 · k
≡ S · k

7.9.2 Noise Propagation in Least Squares

From the form of P (ε) we have

〈εm〉 =

∫
dMε εmP (ε) = 0

〈εnεm〉 =

∫
dMε εnεmP (ε) = Cn,m
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which implies
〈k〉 = 〈x+ ε〉 = x

And so x which is the "true" value of k is also the mean value of k The "true"
value of θ is

θTrue = S · 〈k〉 = S · x
and so

〈θML − θTrue〉 = S · 〈k − x〉 = 0

or
〈θML〉 = 〈θTrue〉

and so the estimate is unbiased.
The covariance of the deviation of θML from the true value θTrue is given

by

〈(θML,n − θTrue,n) (θML,m − θTrue,m)〉 = Sn,pSm,q

〈
(k − x)p (k − x)q

〉
= Sn,pSm,q 〈εpεq〉
= Sn,pSm,qCp,q

=
(
S · C · ST

)
n,m

7.9.3 Fourier Series/Transform = Least Squares

Consider the Fourier series relation

f (x) =

+∞∑
n=−∞

an exp
[
in2π

x

P

]
To find an using Least Squares we want to minimize∫ +P/2

−P/2
dx

(
f (x)−

+∞∑
m=−∞

am exp
[
im2π

x

P

])2

w.r.t. an. Taking the derivative w.r.t. an for any particular n, using dam/dan =
δK (m,n) and setting the result to zero gives∫ +P/2

−P/2
dx

(
f (x)−

+∞∑
m=−∞

am exp
[
im2π

x

P

])
exp [in2πx/P ] = 0

Rearranging gives∫ +P/2

−P/2
dx exp

[
i2πn

x

P

]
f (x) =

+∞∑
m=−∞

am

∫ P/2

−P/2
dx exp

[
i (n+m) 2π

x

P

]
︸ ︷︷ ︸

=PδK(−n,m)

= Pa−n
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Dividing by P and replacing n with −n gives

an =
1

P

∫ +P/2

−P/2
dx exp

[
−in2π

x

P

]
f (x)

The same thing works the same way for Fourier transforms but uses the Fourier
representation of the Dircac delta function. Hence the coeffi cients an for Fourier
series and f̃ (β) for Fourier transforms are Least Squares solutions. The formulae
for f (x) in terms of an for Fourier series and in terms of f̃ (β) for Fourier
transforms are also Least Squares solutions.

7.10 Central Limit Theorem

The joint probability density or distribution for a set of N uncorrelated random
variables x1, x2, · · · , xN is given by the product of the probability distributions
for each random variable

PJoint (x1, x2, · · · , xN ) = P1 (x1)P2 (x2) · · ·PN (xN )

To avoid notational clutter we have replaced PXi (xi) with Pi (xi).
A good example of this type of joint probability distribution is repeated

measurements of a some parameter or variable, such as position, energy, mo-
mentum, voltage, etc, in which the measured value is affected by random noise.
In this case all the individual probabilities are equal

P1 (x) = P2 (x) = · · · = PN (x) ≡ P (x)

Such a case is often labeled "i.i.d." standing for independent identically distrib-
uted. (NOTE: labeled is US spelling, labelled is UK spelling)
For multiple measurements of the same variable we expect the average of the

measured values to better represent the true or noise-free value of the variable
than any single measurement. Hence, consider the probability distribution for
the the average value

x̄ =
1

N

N∑
n=1

xn

of all the measured values and use the probability mapping technique from above
to find the probability distribution for x̄

PX̄ (x̄) =

∫
dx1 · · · dxNδD

(
x̄− 1

N

N∑
n=1

xn

)
P (x1) · · ·P (xN )
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Using the Fourier representation of the Dirac delta function δD (· · · ) we get

PX̄ (x̄) =
1

2π

∫
dω exp [iωx̄]

∫
dx1 · · · dxN exp

[
−i ω
N

N∑
n=1

xn

]
P (x1) · · ·P (xN )

=
1

2π

∫
dω exp [iωx̄]

(∫
dx exp [−iωx/N ]P (x)

)N
=

1

2π

∫
dω exp [iωx̄]

(
Z
( ω
N

))N
where

Z
( ω
N

)
is the characteristic function of P (x) defined above. Use(

Z
( ω
N

))N
= exp

[
N ln

(
Z
( ω
N

))]
In the limit asN →∞, for finite ω we have ω/N → 0. But from the properties of
the characteristic function discussed above, its Taylor expansion around ω/N =
0 is given, to second order, by

Z
( ω
N

)
' 1− i 〈x〉 ω

N
− 1

2

〈
x2
〉 ( ω

N

)2

Substituting this in the logarithm and using the Taylor series for ln [· · · ] to
second order we get

Z
( ω
N

)N
= exp

[
N ln

[
Z
( ω
N

)]]
' exp

[
N ln

[
1− i 〈x〉 ω

N
− 1

2

〈
x2
〉 ( ω

N

)2
]]

' exp

[
−i 〈x〉ω − 1

2

(〈
x2
〉
− 〈x〉2

) ω
N

2
]

Substituting this in the integral for PX̄ (x̄) yields

PX̄ (x̄) ' 1

2π

∫
dω exp

[
iω (x̄− 〈x〉)− 1

2

(〈
x2
〉
− 〈x〉2

) ω2

N

]

' 1√
2π
(
〈x2〉−〈x〉2

N

) exp

− (x̄− 〈x〉)2

2
(
〈x2〉−〈x〉2

N

)
 :Central Limit Theorem

Hence we get a Gaussian distribution for x̄ with mean 〈x〉 and rms variation

σ̄ =

√
〈x2〉 − 〈x〉2

N
=

σ√
N
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where σ is the rms variation of x,

σ =

√
〈x2〉 − 〈x〉2

The fact that PX̄ (x̄) has the Gaussian form given above is the Central Limit
Theorem.

7.11 Bayes Theorem

Simple proof of Bayes theorem. Consider a probability which depends on two
discrete random variables A and B,

PA,B (a, b)

A and B can be different types of variable or the same type of variable parti-
tioned into two distinct sets. PA,B (a, b) is the probability of getting the partic-
ular values a and b for A and B.
Normalization, we must have∑

a,b

PA,B (a, b) = 1

The probability for getting the value a for A independent of the value of b is

PA (a) =
∑
b

PA,B (a, b)

and the probability for getting the value b for B independent of the value of a
is

PB (b) =
∑
a

PA,B (a, b)

Both PA (a) and PB (b) are properly normalized since∑
a

PA (a) =
∑
a

∑
b

PA,B (a, b) =
∑
a,b

PA,B (a, b) = 1

and∑
b

PB (b) =
∑
b

∑
a

PA,B (a, b) =
∑
a,b

PA,B (a, b) = 1

The conditional probability of getting a for A given a particular value b for
B, P (a|b) and the conditional probability for getting b for B given a particular
value a for A, P (b|a) , are both nominally just PA,B (a, b). But neither P (a|b) =
PA,B (a, b) nor P (b|a) = PA,B (a, b) is properly normalized. We need to have∑
a P (a|b) = 1 with b fixed and

∑
b P (b|a) = 1 with a fixed. But, normalization
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is easy to fix and we get

P (a|b) =
PA,B (a, b)∑
a PA,B (a, b)

=
PA,B (a, b)

PB (b)

and

P (b|a) =
PA,B (a, b)∑
b PA,B (a, b)

=
PA,B (a, b)

PA (a)

which are obviously properly normalized.
Combining these two results gives Bayes theorem

P (a|b) =
PA (a)

PB (b)
P (b|a) :Bayes Theorem

7.12 Benfords Law

One might think that in "random" cases the probability that the first (nonzero)
digit of a number is the same for all digits from 1 to 9. This is actually not the
case for a wide range of "random" probability distributions. A result that is
actually very interesting.
In 1881 American astronomer Simon Newcomb noticed that the pages of

logarithms for numbers which started with the digit 1 were more used, worn
and dirty than those that started with the digit 2, which were more used, worn
and dirty than those that started with the digit 3, etc. In 1938 physicist Frank
Benford analyzed a wide range of "random" data sets including: The surface
areas of 335 rivers, The sizes of 3259 US populations, 104 physical constants,
1800 molecular weights, 5000 entries from a mathematical handbook, 308 num-
bers contained in an issue of Reader’s Digest, The street addresses of the first
342 persons listed in American Men of Science and 418 death rates. All obeyed
pretty much the same probability distribution with respect to the first digit of
the numbers involved: The probability of the first digit being a 1 was around
30 % and decreased to around 5 % for the probability that the first digit was a
9. There are various serious mathematical proofs that this should be so. Here I
give an argument (not a proof) based on the fact that probability distributions
for continuous variables are densities and hence must have units of the reciprocal
of the their argument. That is, PX (x) must have units of 1/x.

The offi cial statement of Benfords law is that the first digit d of a number
occurs with probability

P (d) = log[1 + d]− log [d] = log

[
1 +

1

d

]
:Benfords Law

where just for clarity "log" here is base 10.
The probability density for the value of a continuous "random" variable x,

where x has units, must have units of 1/x and so at a minimum PX (x) must
be proportional to 1/x, that is,

PX (x) ∼ 1

x
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Note that since PX (x) dx is unitless a change of the units of x doesn’t change the
probability for x to be in a given range, dx → kdx and PX (x) → (1/k)PX (x)
and so PX (x) dx→ PX (x) dx.
The probability for the first digit of x to be d where d = 1, 2, · · · , 9 is given

by

P (d) =

∫ d+1

d
dxPX (x)∫ 10

1
dxPX (x)

=

∫ d+1

d
dx/x∫ 10

1
dx/x

=
log [d+ 1]− log [d]

log [10]− log [1]

= log [d+ 1]− log [d]

= log

[
1 +

1

d

]
The above argument is of course not a proof of Benfords law in any strict
mathematical sense, it is simply an argument indicating the law should not be
unexpected. Clearly the probabililty decreases with increasing values of d. The
numerical values of the probability for d = 1 to 9 are given by 0.30103, 0.176091,
0.124939, 0.09691, 0.0791812, 0.0669468, 0.0579919, 0.0511525, 0.0457575.

7.13 Fisher Information

The Fisher information (matrix) is defined as

Fij =

∫
dv

(
∂

∂θi
ln
(
P ~X

(
~x | ~θ

)))( ∂

∂θj
ln
(
P ~X

(
~x | ~θ

)))
P ~X

(
~x | ~θ

)
7.13.1 Fisher Information for a Gaussian

To get a sense of what the Fisher information (matrix) means consider a simple
Gaussian distribution where µ = θ corresponds to the mean value of x, i.e.,

PX (x | θ) =
1√

2πσ2
exp

[
− (x− θ)2

2σ2

]

Defining the "expectation value" of any function of x, f (x) by

〈f (x)〉 =

∫ +∞

−∞
dxf (x)PX (x | θ)
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Direct evaluation of the integrals gives

〈1〉 =

∫ +∞

−∞
dxPX (x | θ) = 1

〈x〉 =

∫ +∞

−∞
dxxPX (x | θ) = θ〈

(x− 〈x〉)2
〉

=
〈
x2
〉
− 〈x〉2 =

∫ +∞

−∞
dx (x− θ)2

PX (x | θ) = σ2

The first result shows that PX (x | θ) is normalized to unity as required for
probability densities. Since there is only one θ the Fisher information is a single
number and direct evaluation of the integral

F =

∫ +∞

−∞
dx

(
∂

∂θ
ln (PX (x | θ))

)2

PX (x | θ)

=
1

σ2

Next consider the case where there are N values in both strings or vectors ~x and
~θ and the θn are the mean values of the xn and that the distribution is again
Gaussian with covariance matrix C, i.e.,

Ci,j = 〈(xi − θi) (xj − θj)〉

The probability density for this case is given by

P ~X

(
~x | ~θ

)
=

√
det [M ]

(2π)
N/2

exp

[
−1

2

(
~x−~θ

)
·M ·

(
~x−~θ

)]
=

√
det [M ]

(2π)
N/2

exp

[
−1

2
xiMi,jxj

]
where all xn are assumed to range from −∞ to +∞. It is understood that
doubly repeated indices are summed over the relevant range, i.e.,

xiMi,jxj ≡
N∑

i,j=1

xiMi,jxj = xT ·M · x

In the last equality think of x as the column vector form of ~x, xT as the row
vector form of ~x and

M = C−1 = Matrix inverse of C

det [M ] = Determinant of matrix M

NOTE: Only the symmetric part of M contributes to xT ·M · x and thus we
might as well take M to be a symmetric matrix from the start. Also, for this
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Gaussian form of P ~X

(
~x | ~θ

)
to be normalizable,M must be a "positive definite"

matrix which means xT ·M · x > 0 ∀x, i.e, for any and all of the xn = −∞ to
+∞. Equivalently "postitive definite" here means all the eigenvalues of M are
greater than zero.
Direct evaluation of the Fisher information matrix for the Gaussian distrib-

ution above gives
Fi,j = Mi,j

and so
F = Inverse of the covariance matrix (in this case)

Obviously for different probability distributions F will have a different form but
the above result indicates the fundamental meaning of the Fisher Information.

7.13.2 Maximizing the Fisher Information

In the case where F equals the single value 1/σ2 it is obvious that maximizing F
is equivalent to minimizing σ. But when F is a matrix what does "maximizing
a matrix" mean? It could mean maximizing det [F ] or it could be maximizing
tr[F ] or possibly tr

[
F−1

]
where "tr" means the trace (= sum of the diagonal

elements) or. . . ? For a particular problem it may be obvious what to pick but
the ambiguity has lead to a "measure" for F which can be smoothly interpolated
between the determinant and the trace. Here "measure" means a single number
indicating the "goodness" of F. That "measure" φp for F an N ×N matrix is
defined as

φp [F ] = tr
[

1

N
F p
]1/p

=

(
tr
[

1

N
F · F · · · · · F

])1/p

where there are p factors of F in the last expression. For p = 1 this is the trace
of F normalized by the number of diagonal elements and for p = −1 it’s the
trace of F−1 again normalized to the number of diagonal elements. We now
show that

φ0 [F ] = det [F ]
1/N

and so φp [F ] interpolates smoothly between a wide range of possible "measures"
for F.
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Let I be the N ×N identity matrix so that tr[I] = N , and consider

lim
p→0

(
φp [F ]

)
= lim
p→0

(
tr
[

1

N
F p
]1/p

)

= lim
p→0

(
tr
[

1

N
exp [p ln [F ]]

]1/p
)

= lim
p→0

(
tr
[

1

N
(I + p ln [F ])

]1/p
)

= lim
p→0

(
1

N
(tr [I] + ptr [ln [F ]])

1/p

)
= lim
p→0

((
1 +

p

N
tr [ln [F ]]

)1/p
)

= lim
p→0

(
exp

[ p
N
tr [ln [F ]]

]1/p)
= exp

[
1

N
tr [ln [F ]]

]
= (exp[tr [ln [F ]])

1/N

= det [F ]
1/N

where we have repeatedly used exp[p× something] ' 1 + (p× something) for
p→ 0. In the end we used the relation

det [M ] = exp [tr [ln [M ]]]

which is proved in the Introduction.

7.14 Probability Mapping

Let PA (a) be a discrete probability distribution, that is, PA (a) is the probability
that the discrete random variable A takes the particular discrete value a. Here
we are not concerned directly with the θ parameters and so to avoid clutter they
are suppressed notationally. Of course for PA (a) to be a probability distribution
it must be properly normalized, i.e.,∑

a

PA (a) = 1

The notation
∑
a indicates summing over all possible values of a.

Suppose we want to determine the probability that some function of a, f (a) ,
takes the value b = f (a). Obviously we need to sum up all the probabilities for
a such that f (a) = b. This can be done included a constraint or filter in the
sum over a. Letting

δK (u, v) =

{
1 for u = v
0 for u 6= v
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be the Kronecker delta function, we have, obviously

PB (b) =
∑
a

δK (b, f (a))PA (a)

Given the definition of δK (u, v) the sum clearly includes only those probabilities
for which b = f (a) .

Normalization: Given all possible values of A then f (A) gives all possible
values for B If we sum over all possible values of B then there will always be at
least one value of A for which b = f (a) and PB (b) is properly normalized∑

b

PB (b) =
∑
b

∑
a

δK (b, f (a))PA (a)

=
∑
a

PA (a)

= 1

On the other hand if only a subset of all the possible values of B is considered
then PB (b) is just the probability for the occurence of that subset and it is
not properly normalized over that subset. Sometimes the mapping itself can be
specific in that it picks out only a subset of the a values in which case again
PB (b) is just the probability for that particular occurence and it is not properly
normlized.
In the continuous case the sum should be replaced by an integral and the

Kronecker delta function by a Dirac delta function,δD. Thus if we have PX (x)
as the probability density for continuous random variable X to take the value
x then

PY (y) =

∫
dxδD (y − f (x))PX (x)

is the probability for random variable Y to take the value y = f (x) . Here

δD (x) = Dirac delta function

Since in this case X and hence Y are both continuous variables, PX (x) must
have units of 1/X and PY (y) must have units of 1/Y, but since by definition
dx had units of X and δD (y − f (x)) has units of 1/Y, it follows that the units
of PY (y) are correct.
The same argument about normalization holds here. Integrating PY (y) over

all possible values of y gives ∫
dyPY (y) = 1

PY (y) is not properly normalized if only a subset of the possible values of y is
used or if the mapping itself picks out a particular subset of x values.

The same technique can be used to map a continuous distribution over x
to a discrete one over y by replacing the Dirac delta function in the integral
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with an appropriate sum of combinations of Heaviside step functions. A single
Heaviside step function is defined by

θH (u) =

{
1 for u > 0
0 for u < 0

There is some ambiguity in how to assign the value of θH (0). Often the value
chosen makes no difference but in cases where it does the appropriate value to
use is often defined by the particular problem at hand. Using combinations
of θH to do a given desired mapping yields a sum of integrations over specific
ranges of x and hence the resulting discrete probability distribution does not
and should not have units of 1/Y . This is because the Heaviside step function,
unlike the Dirac delta function, is unitless.
Simple example: What is the probability for x to lie in the range x0 ≤ x ≤

x1. This is given by∫
dxθH (x− x0) θH (x1 − x)PX (x) =

∫ x1

x0

dxPX (x)

Note: This mapping is picking out a particular probability, it is not normalized
unless

∫ x1
x0
dxPX (x) = 1.

7.15 Strong Law of Large Numbers via Probability Map-
ping

Here we use the approach to probability mapping discussed above to prove the
Strong Law of Large Numbers. There is also a weak law which I won’t discuss.
Consider the average of N i.i.d. (independent identically distributed) ran-

dom variables Xn

A =
1

N
(X1 +X2 + · · ·+XN )

Since the Xn are i.i.d. the joint probability distribution for getting the value xn
for Xn for n = 1, 2, · · · , N is the product of the individual probabilities, i.e,.

PX (x1, x2, · · · , xN ) = PX (x1)PX (x2) · · ·PX (xn)

Using probability mapping the probability distribution for the random variable
A to take the value a is given by

PA (a) =

∫
dx1dx2 · · · dxnδD

(
a− 1

N

∑
n

xn

)
PX (x1, x2, · · · , xN )

Using the Fourier representation of the Dirac delta function

δD (x) =

∫
dβ

2π
exp [iβx]
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we get

PA (a) =

∫
dβ

2π
eiβa

(∫
dxe−iβx/NPX (x)

)N
=

∫
dβ

2π
eiβaZ (β)

N

where Z (β) is the characteristic function defined above. Using the series ex-
pansion of Z (β) given above we have

PA (a) =

∫
dβ

2π
eiβa

(
1− i β

N
〈x〉 − β2

2N2

〈
x2
〉

+
iβ3

3!N3

〈
x3
〉

+ · · ·
)N

=

∫
dβ

2π
eiβa

(
1− 1

N

(
iβ 〈x〉+

β2

2N

〈
x2
〉
− iβ3

3!N2

〈
x3
〉

+ · · ·
))N

But in the limit as N →∞ (
1 +

x

N

)N
→ ex

and so in the limit as N →∞

PA (a)→
∫
dβ

2π
eiβa−iβ〈x〉 = δ (a− 〈x〉)

So in the limit as N →∞ the probability density for a is a Dirac delta function
of a−〈x〉 and hence the probability to get any value for a other than 〈x〉 is zero.
This is the strong law of large numbers.

7.16 Random Walk via Probability Mapping

PS (s) =
1

2
(δK (s,+1) + δK (s,−1))

Calculate the probability PX (x) of being at position x after taking N steps
where x of course is an integer. Use probability mapping

PX (x) =
∑
{s}

δK

(
x,

N∑
n=1

sn

)
PS (s1)PS (s2) · · ·PS (sN )

where
∑
{s} =

∑+1
s1=−1

∑+1
s2=−1 · · ·

∑+1
sN=−1 . Use the Fourier representation of

the Kronecker delta function

δK

(
x,

N∑
n=1

sn

)
=

1

2π

∫ 2π

0

dω exp

[
iω

(
x−

N∑
n−1

sn

)]
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then

PX (x) =
1

2π

∫ 2π

0

dω exp [iωx]
∑
{s}

exp

[
−iω

N∑
n=1

sn

]
PS (s1)PS (s2) · · ·PS (sN )

=
1

2π

∫ 2π

0

dω exp [iωx]

(
+1∑
s=−1

exp [−iωs]PS (s)

)N

=
1

2π

∫ 2π

0

dω exp [iωx]

(
1

2
(exp [iω] + exp [−iω])

)N
=

1

2π

∫ 2π

0

dω exp [iωx] cos [ω]
N

If we expand
(

1
2 (exp [iω] + exp [−iω])

)N
using the binomial theorem then each

term can be intergrated to yield a particular Kronecker delta, i.e.,

PX (x) =
1

2N

N∑
n=0

N !

n! (N − n)!

1

2π

∫ 2π

0

dω exp [iωx+ inω − i (N − n)ω]

=
1

2N

N∑
n=0

N !

n! (N − n)!

1

2π

∫ 2π

0

dω exp [iω (x+ 2n−N)]

=
1

2N

N∑
n=0

N !

n! (N − n)!
δK (x,N − 2n)

7.17 Chi-Square Distribution via Probability Mapping

The Chi-Square distribution is the probability distribution for the sum of the
squares of N random variables, xn, each of which follow a Gaussian distribution
with zero mean and the same variance. That is

P (χ) =

∫ +∞

−∞
dx1 · · · dxNδD

(
χ−

(
x2

1 + · · ·+ x2
N

)) exp
[
− 1

2σ2

(
x2

1 + · · ·+ x2
N

)]
(2πσ2)

N/2

It seems customary to measure the xn in units of σ which is equivalent to setting
σ = 1 which we do now.
Using the delta function we have

P (χ) =
1

(2π)
N/2

exp
[
−χ

2

] ∫ +∞

−∞
dx1 · · · dxNδD

(
χ−

(
x2

1 + · · ·+ x2
N

))
Switching to spherical polar coordinates in N dimensions, with ΩN the solid
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angle of a unit sphere in N dimensions, we have

P (χ) =
ΩN

(2π)
N/2

exp
[
−χ

2

] ∫ ∞
0

drrN−1δD
(
χ− r2

)
=

ΩN

(2π)
N/2

exp
[
−χ

2

] ∫ ∞
0

drrN−1δD ((
√
χ− r) (

√
χ+ r))

=
ΩN

(2π)
N/2

exp
[
−χ

2

] 1

2
√
χ
χ(N−1)/2

As shown in the section on solid angles in N dimensions

ΩN =
2πN/2

Γ (N/2)

and so

P (χ) =
χ(N−2)/2

2N/2Γ (N/2)
exp

[
−χ

2

]
This is of course the probability distribution for χ ≥ 0. For χ < 0, P (χ) = 0.
P (χ) is said to have ”N − 1 degrees of freedom".

8 Grassmann Variables

8.1 Definition

Grassmann variables are defined to be anticommuting variables, that is, if ξ and
η are Grassmann variables then

ξη = −ηξ

Grassmann variables are also defined to be anticommuting with respect to them-
selves and so

ξξ = −ξξ = 0

Hence the most general form for any function of a single Grassmann variable,
f (ξ)

f (ξ) = a+ bξ

where a and b can be ordinary numbers (real, imaginary or complex) or they
can be Grassmann themselves. In particular

exp [λξ] = 1 + λξ

is the complete series for the exponential of a Grassmann times another number
λ which can be Grassmann or ordinary.
For 3 Grassmann numbers, ξ, η, χ we have

ξηχ = χξη
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and hence the product of 2 Grassmann variables acts like an ordinary variable,
i.e., it is commuting.
Derivatives are defined in the usual way

∂

∂ξ
ξ = 1

∂

∂ξ
η = 0

There are various arguments for how to define integration of Grassmann
variables but the net result is

Complete Integration Table for Grassman Variables

∫
dξ = 0∫
dξξ = −

∫
ξdξ = 1

That’s it, the complete integration table for Grassmann variables.
For example ∫

dξ exp [λξ] =

∫
dξ (1 + λξ) = λ

∫
dξξ = λ

NOTE: The same integral in the case where ξ is an ordinary variable is pro-
portional to 1/λ. This is why fermion fields (such as the fields representing
electrons, positrons, neutrinos, quarks, etc.) are taken to be Grassman valued
when using functional techniques in quantum field theory.
For a set of Grassmann variables ξn with n = 1 to N we have∫

dξ1dξ2 · · · dξNξi1ξi2 · · · ξiN = ±εi1,i2,··· ,iN

where

εa,b,c,··· = Levi-Civita totally antisymmetric tensor (defined in the Introduction)

The ± ambiguity must be removed in any given case by defining a fixed con-
vention for the sign or a fixed ordering of integration variables. In most case
of practical interest the overall sign either doesn’t matter or it follows from the
problem at hand.
NOTE: The above result that integrals of Grassmans are essentially Levi-

Civita antisymmetric tensors means Grassmann integration is just a convenient
way of handling permutations.
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8.2 Determinants and Grassmann Variables

Consider the integral∫
dη1dη2 · · · dηN

∫
dξ1dξ2 · · · dξN exp

[
ξiMi,jηj

]
where Mi,j is a matrix of ordinary numbers or variables and doubly repeated
indices are assumed to be summed over, i.e.,

ξiMi,jηj ≡
∑
i,j

ξiMi,jηj

the "Einstein summation convention".
Consider first the simple case∫

dη

∫
dξ exp [ξaη] =

∫
dη

∫
dξ (1 + ξaη)

= a

∫
dη

∫
dξξη

= a

∫
dηη

= a

where a is ordinary. To get this result we first used
∫
dη
∫
dξ = 0 then

∫
dξξ = 1

and finally
∫
dηη = 1.

Next consider a 2×2 matrix M . The only term to survive after expanding
the exponential is the one with 2 ξ′s and 2 η′s∫
dη1dη2

∫
dξ1dξ2 exp

[
ξiMi,jηj

]
=

∫
dη1dη2

∫
dξ1dξ2

1

2
ξi1Mi1,j1ηj1ξi2Mi2,j2ηj2

=
1

2
Mi1,j1Mi2,j2

∫
dη1dη2

∫
dξ1dξ2ξi1ηj1ξi2ηj2

= −1

2
Mi1,j1Mi2,j2

∫
dη1dη2

(∫
dξ1dξ2ξi1ξi2

)
ηj1ηj2

= −1

2
Mi1,j1Mi2,j2 (±εi1,i2) (±εj1,j2)

= − (M1,1M2,2 −M1,2M2,1)

= − det [M ]

and the sign ambiguity ±ε does not make a difference. On the other if we use
a different order of the integration variables we get∫

dη1dξ1dη2dξ2 exp
[
ξiMi,jηj

]
= + det [M ]

which follows directly from the previous result since we have defined dξ1dη2 =
−dη2dξ1.
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For the general case expanding the exponent in a series the only term that
does not integrate to zero is the term where the number of ξ′s and the number
of η′s are both exactly N. This term has the form

1

N !

∫
dη1dη2 · · · dηN

∫
dξ1dξ2 · · · dξNξi1Mi1,j1ηj1ξi2Mi2,j2ηj2 · · · ξiNMiN ,jN ηjN

=
1

N !
Mi1,j1Mi2,j2 · · ·MiN ,jN

∫
dη1dη2 · · · dηN

∫
dξ1dξ2 · · · dξNξi1ηj1ξi2ηj2 · · · ξiN ηjN

= ± 1

N !
Mi1,j1Mi2,j2 · · ·MiN ,jN εi1,i2,··· ,iN εj1,j2,··· ,jN

= ±εi1,i2,··· ,iNMi1,1Mi2,2 · · ·MiN ,N

= ±det [M ]

The overall sign depends on N and for the given ordering the signs go as
+,−,−,+,+,− for N = 1, 2, 3, 4, 5, 6, respectively.
In most cases where Grassmann variables or fields are used, such as in the

functional integral approach to quantum field theory, the overall sign the in-
tegral is not important, essentially because normalization cancels it out. On
the other hand we now show that det [M ] is the Jacobeam of a change of inte-
gration variables and we know the same sign ambiguity occurs in the ordinary
commuting case as well. This is why the Jacobean uses the absolute value of
the determinant of the transformation. Hence, as in the ordinary case, the
Grassmann result is generally written as∫

dη

∫
dξ exp

[
ξiMi,jηj

]
= |det [M ]|

NOTE: Often the |· · · | on the determinant are not shown explicity.
This result is the reciprocal of the Jacobean for ordinary commuting vari-

ables. Consider ∫
dx

∫
dy exp [xiMi,jyj ]

where the xi, yj and Mi,j are all ordinary commmuting variables. Making the
change of integration variable

zi = Mi,jyj

the Jacobean follows from

dz1dz2 · · · dzN = det [M ] dy1dy2 · · · dyN
or

dy1dy2 · · · dyN =
1

det [M ]
dz1dz2 · · · dzN

= Jacobean× dz1dz2 · · · dzN
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and so ∫
dx

∫
dy exp [xiMi,jyj ] =

1

det [M ]

∫
dx

∫
dz exp [xizi]

∼ 1

det [M ]

But again det [M ] can be negative and a change of integration variable cannot
change the sign of the integral and so the Jacobean is defined as

Jacobean for commuting variables =
1

|det [M ]|
The result for the Grassmann variables implies the Jacobean for Grassman
variables is the reciprocal of the ordinary Jacobean, i.e.,

λi = Mi,jηj =⇒ dη1dη2 · · · dηN = det [M ] dλ1dλ2 · · · dλN
Taking the absolute value as in the ordinary case we have

Jacobean for Grassmann variables = |det [M ]|

9 Relativity, On Shell, Off Shell

**Needs work**
Relation between energy E and spatial momentum ~p, rest mass m and speed

of light c, all units MKS,

E2 = ~p2c2 +m2c4 = Relativistic energy (squared)

~p = mγ~v = Relativistic momentum

γ =
1√

1− ~v2

c2

Photons are massless so they obey

E =
√
~p2c = |~p| c

~v is velocity measured in a given inertial frame

~v =
d~x

dt

where ~x is position and t is time in the frame.
4-momentum with index notation: subscript 0 is time, subscript 1,2,3 refer

to x, y, z coordinates

p = (p0, p1, p2, p3) =

(
E

c2
, px, py, pz

)
pµp

µ = p2
0 − ~p2 =

E2

c2
− ~p2 = m2c2
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10 WKB (Wentzel Kramers Brillouin)

10.1 Derivation

Consider the partial differential equation (PDE)(
~∂2 + V (~r)

)
φ (~r) = 0

where for i = 1 to N with repeated indices summed over that range,

x̂i = Orthogonal unit vectors spanning the N dimensional space of ~r

~r = x̂ixi = (x1, x2, · · · , xN )

~∂ = x̂i
∂

∂xi
= x̂i∂i = (∂1, ∂2, · · · , ∂N ) = Gradient

~∂2 = ~∂ · ~∂ = ∂2
1 + ∂2

2 + · · ·+ ∂2
N = Laplacian

NOTE: The different ways of writing ~r and ~∂ above are just different notations
for the same thing.
Let

φ (~r) = exp [S (~r)]

Substituting into the PDE and cancelling the overall factor of exp [S (~r)] gives
(suppressing the ~r dependence for notational convenience)(

~∂S
)2

+
(
V + ~∂2S

)
= 0

which can rearranged as∣∣∣~∂S∣∣∣ =

√(
~∂S
)
·
(
~∂S
)

= ±i
√
V + ~∂2S

where i =
√
−1. The first equality in the last line is just a definition of the

notation |· · · | . Assume that ~∂2S (~r) is smaller than V (~r) . Below we will give
examples of how this can happen. But for now expand the square root to first
order in ~∂2S ∣∣∣~∂S∣∣∣ ' ±i√V (1 +

1

2

~∂2S

V

)

' ±i
(
√
V +

1

2

~∂2S√
V

)

So we have the modulus of the gradient of S but not its direction. Ideally we
would like to have ~∂S so that

S (~r (`))− S (~r (0)) =

∫ `

0

d`′ t̂ (`′) · ~∂S (~r (`′))
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where

~r (`) = a particular path or trajectory

` = length along the path

t̂ (`) =
d~r (`)

d`
= unit length vector tangent to the path

~∂S (~r (`′)) =
[
~∂S (~r)

]
~r=~r(`′)

The last line above means take the gradient of S first then replace ~r with ~r (`′) .
NOTE: S (~r) is a scalar function, i.e., at any ~r it has a given value, hence

the value of S (~r (`)) − S (~r (0)) depends only on the points ~r (`) and ~r (0) and
is independent of the path between those two points.
In 1 dimension (1D), the direction is given by default and so in 1D with

position labeled by x we have

∂xS (x) ' ±i
(√

V (x) +
1

2

∂2
xS (x)√
V (x)

)

' ±i
(√

V (x) +
1

2

∂x (∂xS (x))√
V (x)

)

' ±i

√V (x) +
1

2

∂x

(
±i
√
V (x)

)
√
V (x)


' ±i

√
V (x)− 1

4
∂x ln [V (x)]

where in the third line we have substituted ±i
√
V (x) for ∂xS (x) which is valid

to the given order of the expansion. Integrating both sides we have

S (x) ' ±i
∫ x

x0

dx′
√
V (x′)− 1

4
ln [V (x)] +

1

4
ln [V (x0)] + S (x0)

' ±i
∫ x

x0

dx′
√
V (x′)− 1

4
ln [V (x)] + constant

and

exp [S (x)] ' C

V (x)
1/4

exp

[
±i
∫ x

x0

dx′
√
V (x′)

]
: 1D WKB Solution

where C = exp [constant] . This is the standard WKB result for 1D.
Note that the real part of S is an amplitude and the imaginary part is

a phase. Below we will relate the phase to the eikonal, ray tracing Fermats
principle of least time.
The are issues with the above approximate close to any turning points xTP

where V (xTP ) = 0. It looks like things "blow up" but by using Taylor expan-
sions of V (x) around xTP a smooth finite solution can be found.
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In 1D if V (x) = k2
0 = constant, then φ (x) = exp [S (x)] = exp [±ik0x]

which is the standard basis function solution. In multiple dimensions if V (~r) =

k2
0 = constant, then φ (~r) = exp [S (~r)] = exp

[
±i~k · ~r

]
with the "length" of ~k

fixed,
∣∣∣~k∣∣∣ =

√
~k · ~k = k0, but the direction or the combination of directions of

~k are unspecified. Any combination is a solution. It is the boundary condi-
tions, initial conditions, sources and/or sinks for the field φ (~r) which determine

the particular combination and weighting of the basis functions exp
[
i~k · ~r

]
.

The same is true for the WKB solution exp [S (~r)] , boundary conditions, initial
conditions, etc., determine the relevant direction of ~∂S.

10.2 Eikonal, Rays, and Fermat

Consider a particular path ~r (`) with ` the length along the path and where for
all ` the direction of the gradient, ~∂S, is tangent to the path

~∂S (~r)∣∣∣~∂S (~r)
∣∣∣
∣∣∣∣∣∣
~r=~r(`)

=
d~r (`)

d`
= t̂ (`) ∀`

Note that since
d~r · d~r =

(
dx2

1 + dx2
2 + · · · dx2

N

)
= d`2

we have
d~r (`)

d`
· d~r (`)

d`
= t̂ (`) · t̂ (`) = 1

To relate what we’re doing here to optics and ray tracing let

V (~r) = (n (~r) k)
2

= Real and greater than 0 ∀ ~r

where

k =
2π

λ
with λ = vacuum wavelength

n (~r) = position dependent index of refraction

Consider just the
√
V term in the exponent in S and choose the + sign. Since

we have defined d~r (`) /d` as being tangent to ~∂S (~r) at all points along the path
we have

~∂S (~r (`)) =
∣∣∣~∂S (~r (`))

∣∣∣ d~r (`)

d`
= i
√
V (~r (`))

d~r (`)

d`
= ikn (~r (`))

d~r (`)

d`

The right hand side is purely imaginary which means in this case S is pure phase
and so define ψ = S/i so that

~∂ψ (~r (`)) = kn (~r (`))
d~r (`)

d`
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Take the derivative of both sides w.r.t. `. Since the gradient ~∂ does not depend
on `, d/d` ~∂ = ~∂ d/d`,then using the notation d/d` = ∂`, we have

∂`~∂ψ (~r (`)) = ~∂∂`ψ (~r (`))

= ~∂

(
d~r (`)

d`
· ~∂ψ (~r (`))

)
= ~∂

(
d~r (`)

d`
·
(
kn (~r (`))

d~r (`)

d`

))

= ~∂

kn (~r (`))

d~r (`)

d`
· d~r (`)

d`︸ ︷︷ ︸
=1




= k~∂n (~r (`))

Cancelling overall factors of k and equating the left and right hand sides above
gives

~∂n (~r (`)) = ∂`

(
n (~r (`))

d~r (`)

d`

)
=

(
d~r (`)

d`
· ~∂n (~r (`))

)
d~r (`)

d`
+ n (~r (`))

(
∂`
d~r (`)

d`

)
or, rearranging and remembering ∂` = d/d`

d2~r (`)

d`2
=

1

n (~r (`))

(
~∂n (~r (`))− d~r (`)

d`

(
d~r (`)

d`
· ~∂n (~r (`))

))
= Ray trajectory equation

This is the standard differential equation for the trajectory of a ray, ~r (`) given
the index of refraction as a function of position, n (~r) .

Substituting S = iψ in the integral above for S (~r (`)) and using ~∂ψ (~r (`)) =
kn (~r (`)) d~r (`) /d` we have

ψ (~r (`)) = k

∫ `

0

d`′ n (~r (`′)) + ψ (~r (0))

Since only phase differences count we can set ψ (~r (0)) = 0.

10.2.1 Fermats Principle of Least Time

We now show that setting the change in ψ (~r (`)) equal to zero for a small
variation in the path ~r (`) yields the ray trajectory equation derived above. But
since the index of refraction is defined as

n (~r) =
c

v (~r)
=

speed of light in vacuum
speed of light at ~r in a material
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it follows that

1

kc
ψ (~r (`)) =

∫ `

0

d`′
1

v (~r (`′))
= time for ray to propgate from ~r (0) to ~r (`)

Hence the variation of ψ (~r (`)) being 0 for small change in ~r (`) indicates the
ray trajectory is an extremum w.r.t. time which is Fermats principle of "least
time". We only show the trajectory is an extremum. We do not show it always
corresponds to a minimum.
We work with n (~r (`)) instead of v (~r (`)) since it is less messy. Before

evaluating the variation note that because by definition

d~r (`)

d`
· d~r (`)

d`
= 1

we have to do a constrained variation. This can be done using a Lagrange
multiplier. But it’s much easier and cleaner to use an arbitrary parameter, say
σ, to indicate or label position along the ray trajectory with σ not necessarily the
length along the ray trajectory.This works as long as ` increases monotonically
with σ,

d`

dσ
> 0 ∀σ

so that each value of σ indicates one and only one position on the trajectory.
Noting that

d` =
√
d~r · d~r

it follows that

d` =
d`

dσ
dσ =

√
d~r (σ)

dσ
· d~r (σ)

dσ
dσ =

√∣∣∣∣d~r (σ)

dσ

∣∣∣∣2dσ
Hence consider

ψ (~r (σ)) = k

∫ σ

0

dσ′

√∣∣∣∣d~r (σ′)

dσ′

∣∣∣∣2n (~r (σ′))

We will implement the variation by using functional derivatives. They act like
ordinary derivatives up until the functional derivative is being taken w.r.t to
the same function as itself then they yield a Dirac delta function. Functional
derivative notation usually, but not always is written using δ or sometimes D,
instead of ∂ or d. The functional derivative of a function f (x) w.r.t. itself f (x′)
is given by

δf (x)

δf (x′)
= δD (x− x′)

Use the ordinary chain rule until the functional derivative is w.r.t. the identical
function, then use the above result.
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Take the functional derivative of ψ (~r (σ)) with respect to ~r (σ′′) . We can
do this using ~r (σ) = xi (σ) x̂i and δ/δ~r (σ′′) = δ/δxj (σ′′) x̂j . (Rememeber:
Einstein summation convention). Setting the result to 0 gives

0 = x̂j ·
∫ σ

0

dσ′


1
2

1√∣∣∣∣ d~r(σ′)dσ′

∣∣∣∣2
2
dxi(σ′)
dσ′

δ
δxj(σ′′)

dxi(σ′)
dσ′ n (~r (σ′))

+

√∣∣∣d~r(σ′)dσ′

∣∣∣2 δ
δxj(σ′′)

∂jn (~r (σ′))


or, since each vector component must individually be zero

0 =

∫ σ

0

dσ′


1√∣∣∣∣ d~r(σ′)dσ′

∣∣∣∣2
dxi(σ′)
dσ′

δ
δxj(σ′′)

dxi(σ′)
dσ′ n (~r (σ′))

+

√∣∣∣d~r(σ′)dσ′

∣∣∣2 δ
δxj(σ′′)

∂jn (~r (σ′))



=

∫ σ

0

dσ′


1√∣∣∣∣ d~r(σ′)dσ′

∣∣∣∣2
dxi(σ′)
dσ′

d
dσ′

δxi(σ′)
δxj(σ′′)

n (~r (σ′))

+

√∣∣∣d~r(σ′)dσ′

∣∣∣2 δxi(σ′)δxj(σ′′)
∂in (~r (σ′))


where we have used δ

δxj(σ′′)
d
dσ′ = d

dσ′
δ

δxj(σ′′)
. But by definition of functional

derivatives
δxi(σ′)
δxj(σ′′)

= δK (i, j) δD (σ′ − σ′′) and so

0 =

∫ σ

0

dσ′


1√∣∣∣∣ d~r(σ′)dσ′

∣∣∣∣2
dxj(σ′)
dσ′

d
dσ′ δD (σ′ − σ′′)n (~r (σ′))

+

√∣∣∣d~r(σ′)dσ′

∣∣∣2∂jn (~r (σ′)) δD (σ′ − σ′′)


Integrate the first term by parts and use the property of the Dirac delta function
to evaluate the integral with the result

0 = − d

dσ′′

 1√∣∣∣d~r(σ′′)dσ′′

∣∣∣2
dxj (σ′′)

dσ′′
n (~r (σ′′))

+

√∣∣∣∣d~r (σ′′)

dσ′′

∣∣∣∣2∂jn (~r (σ′′))

We can now set σ = ` in which case |d~r (σ) /dσ|2 = |d~r (`) /d`|2 = 1 and
dropping the double prime notation on σ we have

0 = ∂jn (~r (`))− d

d`

(
dxj (`)

d`
n (~r (`))

)
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Rearranging gives

d2xj (`)

d`2
=

1

n (~r (`))

(
∂jn (~r (`))− dxj (`)

d`

dxi (`)

d`
∂in (~r (σ))

)
or in terms of vectors

d2~r (`)

d`2
=

1

n (~r (`))

(
~∂n (~r (`))− d~r (`)

d`

(
d~r (`)

d`
· ~∂n (~r (σ))

))
= Ray trajectory equation

which is exactly the same result from the previous subsection.

11 Energy and Momentum Conservation

11.1 Microscopic Newton and Maxwell Momentum Con-
servation

Here we show conservation of momentum for the "microscopic" (Jackson’s nomen-
clature) Maxwells equations. First do the simple case, i.e., take the matter
(point particles with charge and mass) to be classical (non-quantum) and non-
relativistic. Conservation of momentum still works out if we do the full deal,
i.e., let the matter be relativistic and/or quantum mechanical but then, for the
"and" case, the full machinery if quantum field theory is required. I will put
this derivation at the end.

11.2 Maxwells Equations (MKS units)

~∂ × ~E (~x, t) = −∂t ~B (~x, t)

~∂ × ~H (~x, t) = ~J + ∂t ~D (~x, t)

~∂ · ~D (~x, t) = ρ (~ρ, t)

~∂ · ~B (~x, t) = 0

where

~D (~x, t) = ε0 ~E (~x, t)

~B (~x, t) = µ0
~H (~x, t)

and for a set 1, · · · , N of point particles with trajectories ~xn (t) and charges qn

ρ (~x, t) =
∑
n

qnδ (~x− ~xn (t))

~J (~x, t) =
∑
n

qn (∂t~xn (t)) δ (~x− ~xn (t))

Clearly this satisfies charge conservation.
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NOTE: (1) To simplify notation we will drop writing the explicit ~x and t ,
i.e., ~E (~x, t) = ~E, ~B (~x, t) = ~B, · · · , ~xn (t) = ~xn. (2) qn must account for all the
charges that create and interact with fields, I do mean all. (3) The total charge
is assumed to be zero although this may not actually be totally necessary.
The standard (free space) form of the momentum density of the electromag-

netic field is 1
c2
~E × ~H = ε0 ~E × ~B (units are Newton × sec/m3), hence the time

rate of change of the total field momentum ~P is

∂tPi = ε0

∫
d3x

(
∂t ~E × ~B + ~E × ∂t ~B

)
i

The integral is over all space, the fields vanish at infinity and the subscript i
indicates the vector component in the x, y, z direction. Using Maxwell gives

∂tPi = ε0

∫
d3x

(
1

ε0

(
~∂ × 1

µ0

~B − ~J

)
× ~B − ~E ×

(
~∂ × ~E

))
i

Substituting the identity(
~V ×

(
~∂ × ~V

))
i

= Vj∂iVj − Vj∂jVi

gives

∂tPi = ε0

∫
d3x

(
1

ε0µ0

(Bj∂jBi −Bj∂iBj)−
(
~J × ~B

)
i
− Ej∂iEj + Ej∂jEi

)
Integrating the first and last terms by parts (dropping the surface terms), then

using ~∂ · ~B = 0, ~∂ · ~E = ρ/ε0 and Bj∂iBj +Ej∂iEj = 1
2∂i

(
~B2 + ~E2

)
which is a

pure divergence and hence becomes a surface integral which vanishes at infinity
gives

∂t ~P = −
∫
d3x

((
~J × ~B

)
+ ~Eρ

)
= −

∫
d3x

((∑
n

qn (∂t~xn) δ (~x− ~xn (t))× ~B

)
+ ~E

∑
n

qnδ (~x− ~xn (t))

)
= −

∑
n

qn (∂t~xn)×B (~xn (t) , t)−
∑
n

qn ~E (~xn (t) , t)

= −
∑
n

∂t~pn

where the last line is just Newton since qn (∂t~xn)× ~B (~xn (t) , t)+ qn ~E (~xn (t) , t)
is the force on particle n. And so

∂t

(
~P +

∑
n

~pn

)
= 0
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The total of the field plus matter momentum is conserved. Note that solving
simultaneously the combined Newton and Maxwell system of equations gives all
(classical nonrelativistic) absorption and radiation effects. Everything is there.
If we replace the nonrelativistic Newtons laws with the relativistic ones, every-
thing still works out, and then all classical relativistic absorption and radiation
effects have been accounted for.

11.3 Space Translation Invariance ⇒ Momentum Conser-
vation

For a classical nonrelativistic collection ofN particles labeled with n = 1, · · · , N ,
if their behavior doesn’t depend on the position of the system then its invariant
under spatial translations where all particle positions ~xn → ~xn+~a where ~a is the
same constant position shift of all the particles. In order to include all the forces
on all the particles the potential energy between the particles can only depend
on the combinations ~xn−~xm. The kinetic energy is automatically invariant since
∂t (~xn + ~a) = ∂t~xn. (Of course if there is also no preferred direction in space
then V can’t depend on how the entire system is rotated and so V depends
only on |~xn − ~xm| which leads to angular momentum conservation) To make
things simple work in 1D and so V depends only on |xn − xm| . (Everything
goes through just fine in 2D or 3D or... it’s just more notationally cumbersome
to write out.)
The Lagrangian for a system of particles interacting via a pair potential V

is

L =
∑
n

mn (∂txn)
2

2
− 1

2

∑
n,m

V (|xn − xm|)

The factor of 1/2 in front of V is included to cancel the factor of 2 picked up
since we are double counting the potential energy (the sums on n and m are
independent and so allow for each pair of n and m values to occur twice). Also
we assume V (|xn − xn|) = V (0) = a constant, nominally 0.

The momentum is defined by

pk ≡
∂L

∂ (∂txk)
= mk∂txk

The equations of motion are

∂t
∂L

∂ (∂txk)
=

∂L

∂ (xk)
⇒ ∂tpk = −1

2

∑
n,m

∂

∂xk
V (|xn − xm|)

Using sgn (x) = the sign of x which gives ∂x |x| = ∂x (sgn (x)x) = 2δD (x)x +
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sgn (x) = sgn (x) and ∂xn/∂xk = δn,k we get

∂tpk = −1

2

∑
n,m

∂

∂xk
V (|xn − xm|)

= −1

2

∑
n,m

∂ |xn − xm|
∂xk

∂V (|xn − xm|)
∂ |xn − xm|

= −1

2

∑
n,m

(δn,k − δm,k) sgn (xn − xm)
∂V (|xn − xm|)
∂ |xn − xm|

= −1

2

(∑
m

sgn (xk − xm)
∂V (|xk − xm|)
∂ |xk − xm|

−
∑
n

sgn (xn − xk)
∂V (|xn − xk|)
∂ |xn − xk|

)

= −
∑
m

sgn (xk − xm)
∂V (|xk − xm|)
∂ |xk − xm|

And so the time derivative of the total momentum
∑
k pk satisfies

∂t
∑
k

pk = −
∑
k,m

sgn (xk − xm)
∂V (|xk − xm|)
∂ |xk − xm|

= 0

since ∂V (|xk − xm|) /∂ |xk − xm| is symmetric under k ↔ m but sgn (xk − xm)
is antisymmetric under k ↔ m.

11.4 Microscopic Newton and Maxwell Energy Conserva-
tion

The standard free space form of the electromagnetic energy density is ε0
2
~E2 +

1
2µ0

~B2 (units are Joule/m3 = Newton/m2). The time rate of change of the total

field energy E (do not confuse the field energy E with the field itself ~E) is

∂tE =

∫
d3x

(
ε0 ~E · ∂t ~E +

1

µ0

~B · ∂t ~B
)

=
1

µ0

∫
d3x

(
~E ·
(
~∂ × ~B

)
− ~B ·

(
~∂ × ~E

))
−
∫
d3x~E · ~J

after substituting Maxwells equations. Using the identity

~a ·
(
~∂ ×~b

)
−~b ·

(
~∂ × ~a

)
= −~∂ ·

(
~a×~b

)
gives

∂tE = − 1

µ0

∫
d3x~∂ ·

(
~E × ~B

)
−
∫
d3x~E · ~J

But ∫
d3x~∂ ·

(
~E × ~B

)
=

∫
|~x|=∞

dSr̂ ·
(
~E × ~B

)
= 0
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where dS is the area element on sphere at |~x| =∞ and r̂ is the outward normal
to the sphere surface. The integral vanishes since the fields vanish faster than
1/r2 as ~r approaches infinity.
Substituting for ~J from above gives

∫
d3x~E · ~J =

∫
d3x~E ·

(∑
n

qn (∂t~xn (t)) δ (~x− ~xn (t))

)

=
∑
n

qn (∂t~xn (t))

∫
d3x~E (~x) · δ (~x− ~xn (t))

=
∑
n

∂t~xn (t)
(
qn ~E (~xn (t) , t)

)
after using the electric force ~FE on a particle with charge q is q ~E. The magnetic
force on a particle with charge q is ~FB = q∂t~x × ~B which is perpendicular to
the motion of the particle, hence it follows that the work done on the particle
by the magnetic field ~FB · d~x = ~FB · ∂t~xdt = 0 and therefore the total (electric
and magnetic) work done on the particle is ~FE ·d~x = q ~E ·∂t~x (t) dt. Putting this
altogether we have

0 = ∂tE +

∫
d3x~E · ~J = ∂tE +

∑
n

∂t~xn (t)
(
qn ~E (~xn (t) , t)

)
Again this accounts for the total of all (classical nonrelativistic) absorption
and radiation effects. If we replace the nonrelativistic Newtons laws with the
relativistic ones, everything still works out, and then all classical relativistic
absorption and radiation effects have been accounted for.
NOTE: Working the above analysis backwards, i.e., starting

∫
d3x ~J · ~E is

the time rate of change of the work done on the particles due the fields acts as
a derivation, via energy conservation, of the expression for E for the electro-
magnetic field and of the Poynting Vector ˜ ~E × ~B. This is how it is done in
Jackson’s book "Classical Electrodynamics" for example.

11.5 Time Translation Invariance⇒ Energy Conservation

For a classical nonrelativistic collection ofN particles labeled with n = 1, · · · , N ,
if their behavior doesn’t depend on when the system is intialized and started
then the system is invariant under time translations where all particle posi-
tions ~xn (t) → ~xn (t+ T ) where T is a constant time shift. Initial conditions
are then ~xn (0) → ~xn (T ) , i.e., instead of starting the system at t = 0, it
is started at t = T. As in the case of space rotation and translation invari-
ance, as above, the potential energy between the particles can only depend on
the combinations |~xn (t)− ~xm (t)| hence the potential energy is invariant under
time translation since V (|~xn (t)− ~xm (t)|) → V (|~xn (t+ T )− ~xm (t+ T )|) =
V (|~xn (t)− ~xm (t)|) . That is, V can only depend explicitly on the distances
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between particles and not on when they are at a given distance from each
other. If V depended independently on the distances and on time as well, i.e.,
V (|~xn (t)− ~xm (t)| , t) then energy is not conserved because the energy of the
source causing the explicit time dependence of the potential energy has not be
included. The kinetic energy is automatically invariant since ∂t~xn (t+ T ) =
∂t+T~xn (t+ T ) , i.e., it is the velocity at time t+T. Given that both the kinetic
and potential energies are time translation invariant the total energy is time
translation invariant.
NOTE: The entire argument effectively reduces to V is time translation

invariant when it is a function only of the distances between the particles. We
now show that in this case energy is conserved.
To make things simple work in 1D and so V depends only on xn − xm.

(Everything goes through just fine in 2D or 3D or... it’s just more notationally
cumbersome to write out.)
The Lagrangian for a system of particles interacting via a pair potential V

is, as above,

L =
∑
n

mn (∂txn)
2

2
− 1

2

∑
n,m

V (|xn − xm|)

(Again, to avoid cluttered notation we are not writing out the explicit t depen-
dence of xn)
The total energy which in this case is also called the Hamiltonian, H, is

defined by
H =

∑
n

pn (∂txn)− L

where, as above,

pn ≡
∂L

∂ (∂txn)
= mn∂txn

and so

H =
∑
n

mn (∂txn)
2 −

∑
n

1

2
mn (∂txn)

2
+

1

2

∑
n,m

V (|xn − xm|)

=
∑
n

1

2
mn (∂txn)

2
+

1

2

∑
n,m

V (|xn − xm|)

which is the standard result: Total Energy = Kinetic Energy + Potential Energy.

62



Taking the time derivative gives

∂tH =
∑
n

mn (∂txn)
(
∂2
t xn

)
+

1

2

∑
n,m

∂tV (|xn − xm|)

=
∑
n

mn (∂txn)
(
∂2
t xn

)
+

1

2

∑
n,m

∑
k

(∂txk)
∂

∂xk
V (|xn − xm|)

=
∑
n

mn (∂txn)
(
∂2
t xn

)
+

1

2

∑
k

(∂txk)
∑
n,m

(δk,n − δk,m) sgn (xn − xm)
∂V (|xn − xm|)
∂ |xn − xm|

=
∑
k

mk (∂txk)
(
∂2
t xk
)

+
∑
k

(∂txk)
∑
m

sgn (xk − xm)
∂V (|xk − xm|)
∂ |xk − xm|

=
∑
k

(∂txk)

(
mk

(
∂2
t xk
)

+
∑
m

sgn (xk − xm)
∂V (|xk − xm|)
∂ |xk − xm|

)

=
∑
k

(∂txk)

(
∂tpk +

∑
m

sgn (xk − xm)
∂V (|xk − xm|)
∂ |xk − xm|

)
= 0 via equations of motion from above

11.6 Full Relativistic Field Theory Approach

This is the fun one. The action for a fully relativistic field theory is

S =

∫
d4xLtotal

=

∫
d4x (Lfields + Lmatter + Linteraction)

where L is the Lagrangian (density). For example for QED

LQEDtotal = −1

4
FµνF

µν + ψ̄ (iγµ (∂µ − ieAµ)−m)ψ

where
Fµν = ∂µAν − ∂νAµ

with Aµ the 4-vector potential and ψthe Dirac (Grassman) field. Note that we
are working in "field theorist units" where all numerical constants are unity, i.e.,
c = ~ = ε0 = µ0 = .... = 1.

But to be general we can let φ (~x, t) ≡ φ (x) be a generic field and Ltotal will
depend on φ (x) and ∂φ (x) where ∂φ (x) is shorthand all four derivatives ∂µφ,
i.e., let

Ltotal = L (∂φ (x) , φ (x))

Symmetries and/or invariances imply conservation laws via Noethers theorem.
Here the invariance follows from the fact that the action S is invariant under a
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change of the dummy integration variable d4x

S =

∫
d4xL (∂φ (x) , φ (x))

=

∫
d4x′L (∂′φ (x′) , φ (x′))

= S′

Now let x′µ = xµ + εµ (x) with εµ (x) infinitesimal.

d4x′ = (1 + ∂µεµ) d4x

L (∂′φ (x′) , φ (x′)) = L (∂φ, φ) +
∂L

∂φ
(∂µφ) εµ +

∂L

∂ (∂νφ)
(∂µ∂νφ) εµ

where all the functions on the right hand side depend on x. Since this will be
under the integral

∫
d4x we can integrate the last term by parts and keeping

only terms to first order in ε gives

(1 + ∂µεµ)L (∂′φ (x′) , φ (x′)) = L (∂φ, φ) + ∂µεµL (∂φ, φ)− ∂L

∂ (∂νφ)
(∂µφ) ∂νε

µ

+

(
∂L

∂φ
− ∂ν

∂L

∂ (∂νφ)

)
︸ ︷︷ ︸
=0 Equation of motion

(∂µφ) εµ

The last term vanishes due to the equation of motion and so

S′ − S = 0 =

∫
d4x

(
δνµL (∂φ, φ)− ∂L

∂ (∂νφ)
(∂µφ)

)
∂νε

µ

Integrating by parts and noting that the result holds for arbitrary εµ yields the
result

∂ν

(
∂L

∂ (∂νφ)
(∂µφ)− δνµL (∂φ, φ)

)
= 0

And so the total "energy-momentum" tensor

Tµν =
∂L

∂ (∂µφ)
(∂νφ)− δµνL (∂φ, φ)

is conserved since it’s 4-divergence vanishes

∂µTµν = 0

If φ is a collection of fields indexed by i then

Tµν =
∑
i

∂L

∂ (∂µφi)
(∂νφi)− δµνL (∂φ, φ)

Tµν =
∑
i

∂L

∂ (∂µφi)
(∂νφi)− gµνL (∂φ, φ)
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where gµν is the Minkowski metric, g00 = 1, g11 = g22 = g33 = 1 with all other
entries 0.
For Maxwell with L = − 1

4FµνF
µν and φ1 = A0, φ2 = A1 etc, then (with i, j

summed from 1 to 3) and symmetrizing the results we get

L = −1

4
FµνF

µν = −1

4

(
−2F 2

0i + F 2
ij

)
=

1

2

(
~E2 − ~B2

)
T00 = −F0µF

µ
0 −

1

2

(
~E2 − ~B2

)
= F 2

0i −
1

2

(
~E2 − ~B2

)
=

1

2

(
~E2 + ~B2

)
T0i = −F0µF

µ
i = F0jFij = εijkEjBk =

(
~E × ~B

)
i

which is the standard result (in units where ε0 and µ0 are 1).

12 Capacitor Energy Loss

Electric power, P , (Watts) is given by the product of current, I; (Amps) and
voltage, V (Volts)

P = IV

This power can be dissipated, as in a resistor, or stored as in a capacitor or
inductor. The interesting thing is that in any resistor capacitor (RC) circuit,
during charging, the capacitor always stores only half the energy supplied by
the voltage source, e.g., a battery. The proof is simple.
Energy, E (Joules) is the time integral of the power. For simplicity we

assume the energy is 0 at time t = 0 and
then integrate to t = ∞

E =

∫ ∞
0

dtP =

∫ ∞
0

dtIV

Consider an uncharged capacitor wired in series with a resistor and a battery
of voltage Vbatt. The current is given by the time rate of change of the electric
charge Q(t) that flows past any point in the circuit, i.e.,

I(t) =
dQ (t)

dt

For the battery the total power supplied to the circuit from t = 0 to t =∞
is,assuming Vbatt = constant,

Ebatt =

∫ ∞
0

dtI (t)Vbatt

= Vbatt

∫ ∞
0

dt
dQ (t)

dt

= VbattQbatt
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where Qbatt is the total charge supplied by the battery.
The energy stored in the capacitor, EC , is given by

EC =

∫ ∞
0

dtI (t)VC (t) =

∫ ∞
0

dt
dQ (t)

dt
VC (t)

but the voltage across the capacitor

VC (t) =
QC (t)

C

where QC (t) is the charge on the capacitor at time t which equals the total
charge Q (t) supplied by the battery up to time t and C is the capacitance,
which is constant. Hence we have

EC =

∫ ∞
0

dt
dQ (t)

dt
VC (t)

=
1

C

∫ ∞
0

dt
dQ (t)

dt
Q (t)

=
Q2
batt

2C

=
1

2
VbattQbatt

That last step follows since at t = ∞ the capacitor is fully charged, i.e.,
QC (t =∞) = Qbatt, the current ,I (t =∞) = 0 and the voltage across the
capacitor is equal (and opposite) to the voltage across the battery, i.e,. VC =
|Vbatt| . Hence the amount of energy stored by the capacitor is always 1/2 the
amount supplied to the circuit by the battery (or other voltage source) inde-
pendent of the size (Ohms) of the resistor. The other half the supplied energy
is dissipated in the resistor.
This can be shown in a more explicit way by solving the differential equation

(DE) for the circuit which is

Vbatt = I (t)R+
QC (t)

C

where R is the resistance (Ohms).
Let

QC (t) = CVbatt + q (t)

Then the DE becomes
dq (t)

dt
R+

1

C
q (t) = 0

which has the general solution

q (t) = q (0) e−t/RC

The initial condition is QC (0) = 0, hence q (0) = −CVbatt = Qbatt. This gives

QC (t) = Qbatt

(
1− e−t/RC

)
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Now for the energy dissipated by the resistor we have, using VR (t) = I (t)R

ER =

∫ ∞
0

dtI (t)VR (t)

= R

∫ ∞
0

dtI (t)
2

= R

∫ ∞
0

dt

(
dQ (t)

dt

)2

= R

∫ ∞
0

dt

(
dq (t)

dt

)2

=
RQ2

batt

(RC)
2

∫ ∞
0

dte−2t/RC

=
Q2
batt

RC2

RC

2

=
Q2
batt

2C

=
1

2
VbattQbatt

Note that the R cancels out. Hence independent of the value of R, half the
energy supplied by the battery (or voltage source) is always dissipated in the
resistor and half is stored in the capacitor. The important fact is that the
energy VbattQbatt/2 dissipated by the resistor becomes heat. This has important
implications for thermal management of semiconductor computer chips, i.e., how
to keep chips cool and not waste energy on heat. Every transistor on a chip, not
to mention other parts of the circuitry, has a resistance and a capacitance. And,
as we have just shown, half the energy supplied by the voltage source always
ends up as heat as each capacitor is charged. So half the energy supplied to do
computation automatically ends up heating the chip.

13 Lagrangian, Action, Euler-Lagrange, Deriv-
atives

First, some background. The Hamiltonian is defined as the total energy, kinetic
plus potential, written in terms of generalized position coordinates and canon-
ical momenta. Often, but not always, these coordinates and momenta are the
standard x, y, z coordinates and mass times velocity, respectively, but not al-
ways. In quantum mechanics the Hamiltonian is represented as a operator and
it propagates wave functions forward (or backward) in time. The key point here
being that the Hamiltonian specifically picks out time. But relativity treats time
and space on an equal footing. This means that relativistic quantum mechanics
and quantum field theory done using the Hamiltonian approach had the added
burden of having to show explicitly that the results produced were relativisti-
cally invariant. This fact led Feynman, following Schwinger, to wonder how to
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do quantum mechanics using the Lagrangian, which is the kinetic energy minus
the potential energy, expressed in terms of (generalized) coordinates and veloc-
ities (instead of momenta) and which treats space and time on an equal footing
hence yielding results that are obviously relativistically invariant from the get
go. This lead to the path integral approach to quantum mechanics (discussed in
the next section) which directly generalizes to the functional integral approach
to quantum field theory which is the standard approach used today.

13.1 Lagrangian

The Lagrangian L for classical mechanics is defined as the kinetic energy (KE)
minus the potential energy (PE)

L = KE − PE

in the simplest case in 3D in Cartesian coordinates for a single particle of mass
m subject to the potential energy V (~r, t), where we have included an explicit
time dependent along with the dependence on ~r, we have

L (~v (t) , ~r (t)) =
1

2
m~v (t)

2 − V (~r (t))

where ~r (t) is the particle trajectory, i.e., position as a function of time and
~v (t) = ∂t~r (t) is its associated velocity. The same KE−PE form holds for mul-
tiple particle systems in arbitrary dimensions and using curvilinear coordinates
(cylindrical, spherical polar, etc.).

13.2 Action

In classical mechanics the "Action", often denoted with the letter S, is defined
as the integral of the Lagrangian over time.

S =

∫ tf

ts

dtL (∂t~r (t) , ~r (t))

where ts is the starting time and tf is the end or finish time. Note that S is a
"functional" of the trajectory ~r (t) , that is, because of the integral over time S
depends on the entire shape or functional form of ~r (t) from t = ts to tf while
S is just a function of ts and tf.. Given specific starting and ending positions,
~rs = r (t = ts) and ~rf = ~r (t− tf ), S is also a function of ~rs and ~rf .

NOTE: The functional dependence of S on ~r (t) is often indicated as S (~r (·))
to show that S depends on the functional form of ~r (t) , it does not depend on t.

13.3 Euler-Lagrange

Question: For a given L what trajectory, i.e., what functional form of ~r (t)
extremizes the Action. To find the equation that ~r (t) must satisfy we take the
functional derivative of S w.r.t ~r (t′), which we denote δ/δrn (t′) where n labels
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the x, y, z,etc. component of ~r. A functional derivative w.r.t. a given function
acts like an ordinary derivative (using chain rule) until it acts on itself, then it
acts like a Dirac delta function, e.g., δf(t) /δf(t′) = δD (t− t′) .
Taking the functional derivative of S w.r.t rn (t′) then gives

δS

δrn (t′)
=

δ

δrn (t′)

∫ tf

ts

dtL (∂t~r (t) , ~r (t))

=

∫ tf

ts

dt
δ

δrn (t′)
L (∂t~r (t) , ~r (t))

=

∫ tf

ts

dt

(
∂L (∂t~r (t) , ~r (t))

∂ (∂trn (t))

δ (∂trn (t))

δrn (t′)
+
∂L (∂t~r (t) , ~r (t))

∂ (rn (t))

δrn (t)

δrn (t′)

)
but δ(∂trn(t))

δrn(t′) = ∂t
δrn(t)
δrn(t′) .

δS

δrn (t′)
=

∫ tf

ts

dt

(
∂L (∂t~r (t) , ~r (t))

∂ (∂trn (t))
∂t
δrn (t)

δrn (t′)
+
∂L (∂t~r (t) , ~r (t))

∂ (rn (t))

δrn (t)

δrn (t′)

)
=

∫ tf

ts

dt

(
∂L (∂t~r (t) , ~r (t))

∂ (∂trn (t))
∂tδD (t− t′) +

∂L (∂t~r (t) , ~r (t))

∂ (rn (t))
δD (t− t′)

)
Integrating the first term by parts and drop the endpoint terms (we are varying
~r at t′ and taking ts < t′ < tf so there is no variation at the endpoints ~rs and
~rf we get

δS

δrn (t′)
=

∫ tf

ts

dtδD (t− t′)
(
−∂t

∂L (∂t~r (t) , ~r (t))

∂ (∂trn (t))
+
∂L (∂t~r (t) , ~r (t))

∂ (rn (t))

)
= −∂t′

∂L (∂t′~r (t′) , ~r (t′))

∂ (∂t′rn (t′))
+
∂L (∂t′~r (t′) , ~r (t′))

∂ (rn (t′))

Setting δS
δrn(t′) = 0 to get the condition for ~r (t) to extremize S gives, after

dropping the prime on t

∂t
∂L (∂t~r (t) , ~r (t))

∂ (∂trn (t))
− ∂L (∂t~r (t) , ~r (t))

∂ (rn (t))
= 0

This is known as the Euler-Lagrange equation or equations, since there is one
for each n. The the Euler-Lagrange equationsStrictly speaking ∂t should be
written as d/dt but usually it is written as just ∂t.

13.3.1 Example

The Euler-Lagrange equation for

L =
1

2
m (∂t~r (t))

2 − V (~r (t) , t)

is
m∂2

t ~r (t) = −~∂V (~r (t) , t)
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which is just Newtons Law: ~F = m~a.
To be explicit about notation,

~∂V (~r (t) , t) ≡ ~∂V (~r, t)
∣∣∣
~r=~r(t)

that is, after taking the gradient with respect to ~r, replace ~r with ~r (t) in V.

Some mathematics texts write this as
(
~∂V
)

(~r (t) , t) to indicated taking the

gradient first.
As discussed in the section below on stationary phase and classical mechan-

ics, the Euler-Lagrange equation being the extremum of the Action explains, at
least in part, how quantum mechanics reduces to classical mechanics.
Comment: In quantum field theory the Lagrangian is a function of the fields

and of both the space derivatives and time derivatives of the fields and the
Action is the integral of the Lagrangian over space and time. Hence if the
Lagrangian is relativistically invariant then so is the Action and nominally so
then are all the results derived from the Action.

13.4 Derivatives of the Action

The solution of Euler-Lagrange is the classical (Newtons Law) trajectory, ~rcl (t) .
The Euler-Lagrange equation follows from setting the functional derivative of
the Action to zero. For the classical Action, i.e., the Action evaluated for
~r (t) = ~rcl (t) ,

Scl = S (~rcl (·))
what do derivatives of Scl w.r.t. the starting and ending positions and times
yield?
We will work in 1D so that ~rcl (t) is replaced with xcl (t) and just do the

derivatives w.r.t. xf and tf . Note that obviously xcl (t) is a function of xf and
tf and since we are now varying things at the endpoints we can’t drop those
terms after integrating by parts

∂

∂xf
S (xcl (·)) =

∂

∂xf

∫ tf

ts

dtL (∂txcl (t) , xcl (t))

=

∫ tf

ts

dt
∂

∂xf
L (∂txcl (t) , xcl (t))

=

∫ tf

ts

dt

(
∂ (∂txcl (t))

∂xf

L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))
+
∂xcl (t)

∂xf

L (∂txcl (t) , xcl (t))

∂ (xcl (t))

)
=

∫ tf

ts

dt

((
∂t
∂xcl (t)

∂xf

)
L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))
+
∂xcl (t)

∂xf

L (∂txcl (t) , xcl (t))

∂ (xcl (t))

)
Integrate first term by parts

=

(
∂xcl (t)

∂xf

L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))

)∣∣∣∣tf
ts

−
∫ tf

ts

dt
∂xcl (t)

∂xf

(
∂t
L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))
− L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))

)
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The integral vanishes because xcl (t) satisfies the Euler-Lagrange equation. The
first term when evaluated at ts also vanishes since ∂xcl (ts) /∂xf = ∂xs/∂xf = 0
since xs and xf are independent of each other. That leaves

∂

∂xf
S (xcl (·)) =

∂xcl (tf )

∂xf

L (∂txcl (tf ) , xcl (tf ))

∂ (∂txcl (tf ))

=
∂xf
∂xf

L (∂txcl (tf ) , xcl (tf ))

∂ (∂txcl (tf ))

=
L (∂txcl (tf ) , xcl (tf ))

∂ (∂txcl (tf ))

= canonical momentum at tf

For L = 1
2m (∂tx)

2 − V (x (t) , t) we have explicitly

∂

∂xf
S (xcl (·)) = m∂txcl (tf ) = mvf = pf

Now take the derivative w.r.t. tf

∂

∂tf
S (xcl (·)) =

∂

∂tf

∫ tf

ts

dtL (∂txcl (t) , xcl (t))

= L (∂txcl (tf ) , xcl (tf )) +

∫ tf

ts

dt
∂

∂tf
L (∂txcl (t) , xcl (t))

= L (∂txcl (tf ) , xcl (tf ))

+

∫ tf

ts

dt

(
∂ (∂txcl (t))

∂tf

L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))
+
∂xcl (t)

∂tf

L (∂txcl (t) , xcl (t))

∂ (xcl (t))

)
= L (∂txcl (tf ) , xcl (tf ))

+

∫ tf

ts

dt

((
∂t
∂xcl (t)

∂tf

)
L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))
+
∂xcl (t)

∂tf

L (∂txcl (t) , xcl (t))

∂ (xcl (t))

)
Integrate first term by parts

= L (∂txcl (tf ) , xcl (tf )) +

(
∂xcl (t)

∂tf

L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))

)∣∣∣∣tf
ts

−
∫ tf

ts

dt
∂xcl (t)

∂tf

(
∂t
L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))
− L (∂txcl (t) , xcl (t))

∂ (∂txcl (t))

)
Again, the integral term vanishes since xcl (t) satisfies the Euler-Lagrange equa-
tion. The first term when evaluated at ts also vanishes since xcl (tf ) is fixed at
value xf independent of ts. This leaves

∂

∂tf
S (xcl (·)) = L (∂txcl (tf ) , xcl (tf )) +

(
∂xcl (tf )

∂tf

L (∂txcl (tf ) , xcl (t))

∂ (∂txcl (t))

)
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But for t→ tf we have

xcl (t) = xf + vf (t− tf ) + · · ·
so

∂xcl (t→ tf )

∂tf
= −vf

hence

∂

∂tf
S (xcl (·)) = L (∂txcl (tf ) , xcl (tf ))− vf

L (∂txcl (tf ) , xcl (t))

∂ (∂txcl (t))

= −Ef
= − Energy at tf

For L = 1
2m (∂tx)

2 − V (x (t) , t) we have explicitly

∂

∂tf
S (xcl (·)) =

1

2
mv2

f − V (xf , tf )−mv2
f

= −
(

1

2
mv2

f + V (xf , tf )

)

14 Path Integrals

14.1 Derivation

Path integrals are usually considered to be related to Quantum Mechanics but
that is not necessary at all. Although they do get used for quantum mechanics
and especially quantum field theory in the form of functional integrals, path
integrals follow for any partial differential equation which is first order in one
(or more) of the variables.
Consider a Partial Differential Equation (PDE) of the form

∂tφ (~r, t) = F
(
t, ~r, ~∂

)
φ (~r, t)

Here ~r could represent position in any number of dimensions and t could repre-
sent time, but neither of these representations is necessary. For example, in the
paraxial wave equation ”t ” is position along the optic axis which is generally
indicated with the variable z. But, even though the variable t does not have to
have anything to do with time, for convenience, I will refer to it as time. Also,

F
(
t, ~r, ~∂

)
can be any combination of functions of t, ~r and derivatives w.r.t. ~r,

i.e., ~∂. A specific example is discussed below.
We would like simply to write the solution as

φ (~r, t) = exp

[∫ t

0

dtF
(
t, ~r, ~∂

)]
φ (~r, 0)
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but this is WRONG because F depends on both ~r and ~∂ and hence the Taylor

expansion of exp
[∫ t

0
dtF

(
t, ~r, ~∂

)]
will generate terms where ~∂ is acting on the ~r

dependence of F and such derivative terms are not present in the original PDE.
The path integral approach gets around this, but at the expense of turning

ordinary integrals into path integrals.
It follows from the PDE that over a short time (remember t can be any

variable it does not have to be "time") step ∆t we have

φ (~r, t+ ∆t) ' φ (~r, t) + ∆tF
(
t, ~r, ~∂

)
φ (~r, t)

To first order in ∆t this is equivalent to

φ (~r, t+ ∆t) ' exp
[
∆tF

(
t, ~r, ~∂

)]
φ (~r, t)

Iterating this N times we have

φ (~r, t+ (N + 1) ∆t) ' exp
[
∆tF

(
t+N∆t, ~r, ~∂

)]
exp

[
∆tF

(
t+ (N − 1) ∆t, ~r, ~∂

)]
· · ·

· · · exp
[
∆tF

(
t+ 2∆t, ~r, ~∂

)]
exp

[
∆tF

(
t+ ∆t, ~r, ~∂

)]
φ (~r, t)

Setting t′ = (N + 1) ∆t and taking the limit as ∆t → 0 and N → ∞ in such a
way that t′ stays fixed, the above product of integrals becomes a path integral.

The best way to see this is to consider a specific form for F. So, consider an
F with the specific form

F
(
t, ~r, ~∂

)
= c~∂2 + V (~r, t)

where c is an arbitrary complex valued constant and V (~r) can be complex valued
as well. We now have

φ (~r, t+ ∆t) ' φ (~r, t) + c∆t~∂2φ (~r, t) + ∆tV (~r, t)φ (~r, t)

To first order in ∆t this is the same as

φ (~r, t+ ∆t) ' exp
[
c∆t~∂2

]
exp [∆tV (~r, t)]φ (~r, t)

We have written the above as a product of two exponentials for convenience
in executing the next steps in the derivation. But note two things. First,

if we had V = 0 then φ (~r, t+ ∆t) = exp
[
c∆t~∂2

]
φ (~r, t) is exact for any

value of ∆t, large or small, since c is a constant independent of t. Second,
exp [A+B] = exp [A] exp [B] if and only if, A and B commute, i.e., if and only if
AB = BA. This can be proved by Taylor expanding exp [A+B] and noting that
you need to be able to replace BA with AB everywhere in order to produce a
series which sums to exp [A] exp [B] . Here we have A = c~∂2 and B = V (~r, t) but
~∂2 (V (~r, t)φ (~r, t)) =

(
~∂2V (~r, t)

)
φ (~r, t)+2~∂V (~r, t)·~∂φ (~r, t)+V (~r, t) ~∂2φ (~r, t),
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hence ~∂2V (~r, t)φ (~r, t)−V (~r, t) ~∂2φ (~r, t) 6= 0 and so c~∂2 and V (~r, t) do not com-

mute and exp
[
c∆t~∂2 + ∆tV (~r, t)

]
6= exp

[
c∆t~∂2

]
exp [∆tV (~r, t)] to all orders

in ∆t. It is only true in the limit as ∆t→ 0.
Noting that

exp [V (~r, t)]φ (~r, t) =

∫
dDr′δD (~r − ~r′) exp [V (~r′, t)]φ (~r′, t)

where D is the number of dimensions of the space ~r lives in, we have

φ (~r, t+ ∆t) '
∫
dDr′ exp

[
c∆t~∂2

]
δD (~r − ~r′) exp [∆tV (~r′, t)]φ (~r′, t)

Using

exp
[
c∆t~∂2

]
δD (~r − ~r′) =

∫
dDp

(2π)
D

exp
[
c∆t~∂2

]
exp [i~p · (~r − ~r′)]

=

∫
dDp

(2π)
D

exp
[
−c∆t~p2 + i~p · (~r − ~r′)

]
=

(√
1

4πc∆t

)D
exp

[
− (~r − ~r′)2

4c∆t

]
we have

φ (~r, t+ ∆t) '
∫
dDr′

(√
1

4πc∆t

)D
exp

[
− (~r − ~r′)2

4c∆t

]
exp [∆tV (~r′, t)]φ (~r′, t)

'
∫
dDr′

(√
1

4πc∆t

)D
exp

[
− (~r − ~r′)2

4c∆t
+ ∆tV (~r′, t)

]
φ (~r′, t)

where in the last step we have used the fact that (~r − ~r′)2 commutes with V (~r, t)
and so we can put the two exponents together into one without error.
Letting t→ t+ ∆t and replacing the dummy variable ~r′ with ~r1 we have

φ (~r, t+ 2∆t) '
∫
dDr1

(√
1

4πc∆t

)D
exp

[
− (~r − ~r1)

2

4c∆t
+ ∆tV (~r1, t+ ∆t)

]
φ (~r1, t+ ∆t)

then using the above result for φ (~r, t+ ∆t) with ~r = ~r1 gives

φ (~r, t+ 2∆t) '
∫
dDr1d

Dr′

(√
1

4πc∆t

)2D

exp

[
− (~r−~r1)2

4c∆t + ∆tV (~r1, t+ ∆t)

− (~r1−~r′)
2

4c∆t + ∆tV (~r′, t)

]
φ (~r′, t)

Repeating this process N times gives

φ (~r, t+ (N + 1) ∆t) '
∫
dDrN · · · dDr1d

Dr′

(√
1

4πc∆t

)(N+1)D

× exp

[
N∑
n=0

(
− (~rn+1 − ~rn)

2

4c∆t
+ ∆tV (~rn, t+ n∆t)

)]
φ (~r′, t)
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where ~rN+1 = ~r and ~r0 = ~r′.
We can write ~rn = ~r (t+ n∆t) where ~r (t) is any particular path or trajectory

through the D dimensions space as a function of t, then in the limit as ∆t→ 0
while N →∞ so that (N + 1) ∆t = t′ stays fixed we can write

N∑
n=0

(
− (~rn+1 − ~rn)

2

4c∆t
+ ∆tV (~r2, t+ n∆t)

)
=

N∑
n=1

∆t

(
− 1

4c

(
~rn+1 − ~rn

∆t

)2

+ V (~rn, t+ n∆t)

)

=

∫ t′

0

dt

(
− 1

4c
~v (t)

2
+ V (~r (t) , t)

)
with

~v (t) = lim
∆t→0

(~r (t+ ∆t)− ~r (t))

∆t

where here t is any "time" value between t and t+ t′.
Again using ~rn = ~r (t+ n∆t) we see that the integral

∫
dDrn is integrating

over all possible positions of the path ~r (t) at "time" t + n∆t and hence the
string of integrals ∫

dDrN · · · dDr2d
Dr1

is, in a piecewise linear sense, integrating over all possible paths starting at ~r′

and ending at ~r. Thus in the limit as ∆t → 0, N → ∞ with t′ = (N + 1) ∆t
fixed, this is equivalent to integrating over all possible paths from starting at
~r (t) = ~r′ and ending at ~r (t+ t′) = ~r. The factors(√

1

4πc∆t

)(N+1)D

are normalization factors.
Thus we can consider

lim
∆t→0
N→∞

(N+1)∆t=t′

∫
dDrN · · · dDr2d

Dr1

(√
1

4πc∆t

)(N+1)D

→
∫ ~r(t+t′)=~r

~r(t)=~r′
δ~r (t)

as the (normalized) integral over all possible paths from ~r (t) = ~r′ to ~r (t+ t′) =
~r and define the "propagator" as the path integral

K (~r, ~r′, t, t+ t′) =

∫ ~r(t+t′)=~r

~r(t)=~r′
δ~r (t) exp

[∫ t′

0

dt

(
− 1

4c
~v (t)

2
+ V (~r (t) , t)

)]

The above results then reduce to

φ (~r, t+ t′) =

∫
dDr′K (~r, ~r′, t, t+ t′)φ (r′, t)
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Without any loss in generality we can set t = 0 to get

φ (~r, t′) =

∫
dDr′K (~r, ~r′, t′)φ (r′, 0)

COMMENTS: There are only a few cases where the path integral can be
evaluated exactly. Hence many approximate but powerful techniques have been
developed for getting useful results in cases where the path integral cannot be
evaluated exactly. The two most common are a perturbation approach in V and
the second is a stationary phase evaluation of the path integral.

14.2 Stationary Phase and Classical Mechanics

For nonrelativistic quantum mechanics we have the Schrodinger equation

i~∂tψ (~r, t) =

(
− ~

2

2m
~∂2 + V (~r, t)

)
ψ (~r, t)

where the propagator K (~r, ~r′, t, t′) satisfies

i~∂tK (~r, ~r′, t′) =

(
− ~

2

2m
~∂2 + V (~r, t)

)
K (~r, ~r′, t′)

K (~r, ~r′, t→ t′, t′) = δD (~r − ~r′)

Comparing this to the path integral solution above we have c → i~/2m and
V → − (i/~)V and so K (~r, ~r′, t) is given by

K (~r, ~r′, t) =

∫ ~r,(t)=~r

~r(0)=~r′
δ~r (t) exp

[
i

~

∫ t′

0

dt
(m

2
~v (t)

2 − V (~r (t) , t)
)]

with ~v (t) = ∂t~r (t) .
Note that in classical mechanics the Langragian L is defined as Kinetic

Energy minus Potential Energy (see above section) and so we have

L (~r (t) , ∂t~r (t)) =
m

2
~v (t)

2 − V (~r (t) , t)

The "action" S is defined as the integral of the Lagrangian over time or

S =

∫
dtL (~r (t) , ∂t~r (t))

Note that S is a functional of ~r (t) , that is, for any given trajectory or path,
S evaluates to a real number, that is S is a map from trajectories to the reals.
In 1D it is a map from the function x (t) to the reals, in 3D it is a map from 3
functions ~r (t) = (x (t) , y (t) , z (t)) to the reals. Anything that maps functions
to numbers is called a functional.
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Taking the functional derivative (defined in another section) of S w.r.t. ~r (t)
and setting it to zero yields the Euler-Lagrange equations, i.e.,

δS

δrn (t)

∣∣∣∣
~r(t)=~rcl(t)

= 0 → ∂t
∂L

∂ (∂trn)
− ∂L
∂rn

∣∣∣∣
~r(t)=~rcl(t)

= 0

where ~rcl (t) is the classical path or trajectory. Here n labels the x, y, z com-
ponents of ~r and the assumption is the boundary conditions ~r (0) = ~r′ and
~r (t) = ~r are held fixed when varying ~r (t) . The Euler-Lagrange equation is the
equivalent of Newtons ~F = m~a. In other words, classical mechanics corresponds
to finding the paths or trajectories which extremize the action, i.e., for which
δS/δ~r (t) = 0. Such paths or trajectories are the "stationary points" of the
action.
Using the definition of S we have

K (~r, ~r′, t) =

∫ ~r,(t)=~r

~r(0)=~r′
δ~r (t) exp

[
i

~
S (~r (t) , ∂t~r (t))

]
To put this is words, the propagator for the Schroding equation, or quantum
mechanics, is the sum over all paths from ~r (0) = ~r′ to ~r (t) = ~r of the phase fac-
tors exp

[
i
~S (~r (t) , ∂t~r (t))

]
. As just discussed above, classical mechanics corre-

sponds to those paths for which S is "stationary" δS/δ~r (t) = 0, hence quantum
mechanics corresponds to adding the phase fluctuations from nonclassical paths
to the one (or multple ones) from the classical path(s).
The stationary phase approximation as discussed below amounts to expand-

ing the phase to quadratic order about the stationary points of the phase. Here
that amounts to letting ~r (t) = ~rcl (t) + ∆r (t) with ~r (0) = ~r′ and ~r (t) = ~r
so that ∆~r (0) = ∆~r (t) = 0 and expanding S (~r (t) , ∂t~r (t)) to second order in
δ~r (t). Noting that ~ ' 10−34Js (Joule seconds) which is extremely small in
everyday terms and so we expect that quantum fluctuations about the classi-
cal trajectory will be small, at least in certain relevant cases. Expanding S to
second order in ∆~r (t) gives

S (~r (t) , ∂t~r (t)) = S (~rcl (t) , ∂t~rcl (t)) +

∫
dt

δS

δrn (t)

∣∣∣∣
cl

∆rn (t)

+
1

2

∫
dtdt′

δ2S

δrn (t) δrm (t′)

∣∣∣∣
cl

∆rn (t) ∆rm (t′) + · · ·

The subscript cl indicates setting ~r (t) = ~rcl (t) after taking the functional deriv-
atives.
Given the Euler-Lagrange equations this reduces to

S (~r (t) , ∂t~r (t)) = Scl+
1

2

∫
dtdt′

δ2S

δrn (t) δrm (t′)

∣∣∣∣
~r(t)=~rcl(t)

∆rn (t) ∆rm (t′)+· · ·

where Scl ≡ S (~rcl (t) , ∂t~rcl (t)). The path integral for the propagator to second
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order in ∆~r (t) then becomes

K (~r, ~r′, t) = eiScl/~
∫ ∆~r(t)=0

∆~r(0)=0

δ (∆r (t)) exp

[
i

2~

∫
dtdt′

δ2S

δrn (t) δrm (t′)

∣∣∣∣
cl

∆rn (t) ∆rm (t′)

]
Based on the integral of a Gaussian we expect that∫ ∆~r(t)=0

∆~r(0)=0

δ (∆r (t)) exp

[
i

2~

∫
dtdt′

δ2S

δrn (t) δrm (t′)

∣∣∣∣
cl

∆rn (t) ∆rm (t′)

]
∼ 1√

det
[

δ2S
δrn(t)δrm(t′)

∣∣∣
cl

]
But δ2S

δrn(t)δrm(t′)

∣∣∣
cl
is a differential operator, not a matrix, so the question is

how to evaluate the determinant of an operator. This is discussed in the next
section.

14.3 Path Integral Determinant

As shown in the previous section a path integral is essentially the infinite di-
mensional limit of a finite dimensional "volume" integral.
Consider that in D dimensions with ~y = (y1, y2, · · · , yN ) we have (Einstein

Summation Convention)∫ +∞

−∞
dDy exp

[
−

D∑
n,m=1

ynMn,mym

]
=

∫ +∞

−∞
dDy exp [−ynMn,mym]

=
πD/2√
det [M ]

Because we have yiMi,jyj only the symmetric part of the matrix M contributes
and so, w.l.o.g., we can take M to be symmetric. For M symmetric and real,
all its eigenvalues are real. Diagonalizing M gives∫ +∞

−∞
dDy exp [−ynMn,mym] =

∫ +∞

−∞
dDy′ exp

[
−

D∑
n=1

λny
′2
n

]

=

∫ +∞

−∞
dy′1e

−λ1y′21
∫ +∞

−∞
dy′2e

−λ2y′22 · · ·
∫ +∞

−∞
dy′De

−λDy′2D

=
πD/2√

λ1λ2 · · ·λD

=
πD/2√
det [M ]

where λn are the eigenvalues of M. Obviously this only works if all the λn > 0,
hence it only works if M is a positive definite matrix.
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The other way to see this is, if the square root of M can be found, i.e., a
matrix Q such that M = Q ·Q = Q2, then changing variables to y′n = Qn,mym
(Einstein Summation Convention) has the Jacobian

∣∣det
[
Q−1

]∣∣ = 1/ |det [Q]| =
1/det [Q] where the last equality follows from the fact thatM is positive definite.
Hence we have∫ +∞

−∞
dDy exp [−ynMn,mym] =

∫ +∞

−∞

dDy′

det [Q]
exp

[
−

D∑
n=1

y′2n

]

=
πD/2

det [Q]

=
πD/2

det
[
M1/2

]
=

πD/2√
det [M ]

Taking the initial time as 0 and the final time as T and using notation q (t)

for position in 1D we have for L = m (∂tq (t))
2
/2− V (q (t)) and 0 < t < T

S =

∫ T

0

dt′
(m

2
(∂t′q (t′))

2 − V (q (t′))
)

δS

δq (t)
=

∫ T

0

dt′
(
m (∂t′q (t′))

(
∂t′
δq (t′)

δq (t)

)
− ∂V (q (t′))

∂ (q (t′))

δq (t′)

δq (t)

)
=

∫ T

0

dt′
(
m (∂t′q (t′)) (∂t′δD (t− t′))− ∂V (q (t′))

∂ (q (t′))
δD (t− t′)

)
=

∫ T

0

dt′
(
−m

(
∂2
t′q (t′)

)
− ∂V (q (t′))

∂ (q (t′))

)
δD (t− t′)

= −m
(
∂2
t q (t)

)
− ∂V (q (t))

∂ (q (t))

= −m
(
∂2
t q (t)

)
− V ′ (q (t))

δ2S

δq (t) δq (t′)
= −

(
m∂2

t

δq (t)

δq (t′)
+

∂2V (q (t))

∂ (q (t)) ∂ (q (t′))

δq (t)

δq (t′)

)
= −

(
m∂2

t +
∂2V (q (t))

∂ (q (t)) ∂ (q (t′))

)
δD (t− t′)

= −
(
m∂2

t + V ′′ (q (t))
)
δD (t− t′)

with V ′ (q) = ∂qV (q) and V ′′ (q) = ∂2
qV (q) .

Note that

δS

δq (t)
= 0 → m∂tq (t) = −V ′ (q (t)) = Newton
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To simplify notation from the previous section set

∆r (t) = y (t)

Setting q (t) = qcl (t) to determine the lowest order quantum fluctuations about
the classical solution we want to evaluate

∆ ≡
y(T )=0∫
y(0)=0

δy (t) exp

 i
}

T∫
0

dt
1

2

δ2S

δq (t) δq (t′)

∣∣∣∣
cl

y (t) y (t′)



=

y(T )=0∫
y(0)=0

δy (t) exp

− i
}

T∫
0

dt
1

2

[(
∂2
t + V ′′ (t)

)
δD (t− t′)

]
y (t) y (t′)



=

y(T )=0∫
y(0)=0

δy (t) exp

− i

2}

T∫
0

dty (t)
(
∂2
t + V ′′ (t)

)
y (t)


≡ 1√

det
(
i
π~ (∂2

t + V ′′ (t)) δD (t− t′)
)

For nonperiodic classical trajectories: qcl (0) 6= qcl (T ) there is generally a single
solution for qcl (t) . For periodic classical trajectories qcl (0) = qcl (T ) = q0,
a specified value. In this case there will be multiple solutions (with different
energy) with the basic period of the path given by T/n for integer n. This
case requires accounting for the multiple trajectories. We will only consider the
single trajectory case.

We can solve the integral
T∫
0

dty (t)
(
∂2
t + V ′′ (t)

)
y (t) by diagonalizing the

operator
∂ 2
t + V ′′ (t)

subject to the boundary conditions y (0) = y (T ) = 0.
To diagonalize it make the following change of variables (I have no idea how

you see ahead of time that this approach will work, but it does), let

∂ty (t) = ∂tz (t) +K (t) y (t)

and choose K so that

ẏ2 − V ′′ (t) y2 = ż2 ± ∂t
(
something× y2

)
(either sign works)
Here we are using the notation:

ẏ ≡ ∂ty (t) ,

That is, a "dot" over any function indicates the derivative of that function w.r.t.
time.
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Since the second term on the right hand side of ẏ2 − V ′′ (t) y2 above is an
exact derivative which vanishes at the endoints (assuming the "something" is
finite there) this reduces the path integral to that of a free particle, i.e.,
This change of variables gives

ẏ2 − V ′′y2 = ż2 + 2Kyż +K2y2 − V ′′y2

= ż2 + 2Ky (ẏ −Ky) +K2y2 − V ′′y2

= ż2 + 2ẏyK −
(
K2 + V ′′

)
y2

= ż2 +
(
∂t
(
y2
))
K −

(
K2 + V ′′

)
y2

Thus, if we choose K so that

∂tK = −
(
K2 + V ′′

)
then we get the form we want.
Let

K =
∂tf

f

then

∂tK =
∂ 2
t f

f
−
(
∂tf

f

)2

=
∂ 2
t f

f
−K2

Thus, letting K = ∂tf/f automatically generates the −K2 term and so we will
get the −V ′′ if we pick f so that

∂ 2
t f

f
= −V ′′

or equivalently (
∂ 2
t + V ′′

)
f = 0

Hence f is the 0 eigenvalue solution to the operator we want to diagonalize. Note
that we want f to be nonvanishing everywhere in the interval 0 to T otherwise
K will nominally blow up.

To find y (t) as a function of z (t) integrate ẏ = ż+Ky = ż+
(
ḟ/f

)
y to get

y (t) = z (t) +

∫ t

0

dt′
ḟ (t′)

f (t′)
y (t′)

More properly this should be written as

z (t) = y (t)−
∫ t

0

dt′
ḟ (t′)

f (t′)
y (t′)

which expresses z (on the left) in terms of y (on the right). Note that y (0) =
0 ⇒ z (0) = 0 (as long as ḟ/f does not contain a singularity at t = 0). The
value of z (T ) is not obvious. How this is handled is shown below.
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The inverse of this relation can be found by solving

ż = ẏ −Ky

= ẏ − ḟ

f
y

Use an integrating factor. Let y (t) = exp
[∫ t

0
dt′ḟ (t′) /f (t′)

]
γ (t) = f (t) /f (0) γ (t)

and we have

ż = ẏ − ḟ

f
y

=
ḟ

f
y + exp

[∫ t

0

dt′ḟ (t′) /f (t′)

]
γ̇ − ḟ

f
y

= exp

[∫ t

0

dt′ḟ (t′) /f (t′)

]
γ̇

=
f (t)

f (0)
γ̇

Solving for γ (t) and multiplying it by f (t) /f (0) to get y (t) gives

y (t) =
f (t)

f (0)
γ (t) =

f (t)

f (0)
f (0)

∫ t

0

dt′
ż (t′)

f (t′)
= f (t)

∫ t

0

dt′
ż (t′)

f (t′)

If we integrate by parts and use z (0) = 0 this can be rewritten as

y (t) = z (t) + f (t)

∫ t

0

dt′
ḟ (t′)

f (t′)
2 z (t′)

= z (t) + f (t)

∫ T

0

dt′θ (t− t′) ḟ (t′)

f (t′)
2 z (t′)

which is how it appears in the 1974 PRD paper by Dashen, Hasslacher and
Neveu. The second form above for y (t) has all the t dependence inside the
integral. This is useful for evaluating the Jacobian.of the change of integration
variables in the path integral as shown below.
As metioned above, with the change of variables the action becomes∫ T

0

dt

(
1

2
ẏ2 − V ′′ (t) y2

)
=

∫ T

0

dt
1

2
ż2

The condition that y (T ) = 0 will be implemented in the path integral by
including a delta function. The same could be done with the condition y (0) = 0
but in the discrete time formalism we will find it more straightforward to set
the value of y (0) = 0 and not integrate over it. Note that setting y (0) = 0 also
sets z (0) = 0 as discussed above.
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The delta function on y (T ) can implemented by multplying the path integral
with a judiciously chosen form for "1"

1 =

∫
d (y (T )) δ (y (T ))

=

∫
dα

2π

∫
d (y (T )) exp [iαy (T )]

=

∫
dα

2π

∫
d (y (T )) exp

[
iαf (T )

∫ T

0

dt
ż (t)

f (t)

]

In the last line we have substituted the solution for y (t) in terms of z (t) . This
is useful since it now looks like a source term in the path integral, only coupled
to ż rather than to z.
Putting all the change of integration variable parts together we get

∆ =

∫ y(T )=0

y(0)=0

δy (t) exp

[
i

}

∫ T

0

dt
1

2

(
ẏ2 − V ′′ (t) y2

)]

=

∫
dα

2π

∫
d (y (T )) exp [iαy (T )]

∫ y(T )

z(0)=0

δy (t) exp

[
i

}

∫ T

0

dt
1

2

(
ẏ2 − V ′′ (t) y2

)]

=

∫
dα

2π

∫
z(0)=0

δz (t) det

[
δy (t)

δz (t′)

]
exp

[
i

}

∫ T

0

dt

(
ż (t)

2
+ }α

f (T )

f (t)
ż (t)

)]

In the last line we have made the replacement∫
d (z (T ))

∫ z(T )

z(0)=0

δz (t) =

∫
z(0)=0

δz (t)

That is integrate over all paths z (t) with z (0) = 0 and include z (T ) in the
integration as well.when doing the path integral. The factor det [δy (t) /δz (t′)]
is the Jacobian for the change of integration variables. Note that it should
be evaluated to include the d (y (T )) to d (z (T )) transformation as well as the
regular δy (t) to δz (t) transformation. The Jacobian will be evaluated below.
For now just note that since the change of variables from y (t) to z (t) is linear
this means the Jacobian is independent of z (t) and so can be pulled outside the
path integral.
To evaluate the path integral discretize it by letting n = 0, 1, ..., N with

tn = nε with ε = T //N and zn = z (tn) . Note that with this definition t0 = 0
and tN = T. The boundary condition z (0) = 0 is implemented by setting z0 = 0.
The boundary condition y (T ) = 0 is being handled by the delta function. In
discrete form we have

∆ = lim
N−>∞
Nε=T

det

[
δy (t)

δz (t′)

] ∫
dα

2π

∫
dz1

µ
· · · dzN

µ
exp

[
i

}

N∑
n=1

(
(zn−zn−1)2

2ε

+}α f(T )
fn

(zn − zn−1)

)]
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where µ =
√

2πiε} is the proper measure (normalization so that each gaussian
integral when done on its own, uncoupled to the others, is unity). With the
delta function handling the y (T ) = 0 condition we have to integrate over dzN
as well but this makes it easy to change the discrete integration variables to

bn = zn − zn−1

which gives

∆ = lim
N−>∞
Nε=T

det

[
δy (t)

δz (t′)

] ∫
dα

2π

N∏
n=1

(∫
db

µ
exp

[
i

}
b2

2ε
+ iα

f (T )

fn
b

])

= lim
N−>∞
Nε=T

det

[
δy (t)

δz (t′)

] ∫
dα

2π

(
exp

[
− i}α

2f (T )
2

2

N∑
n=1

ε

f 2
n

])

= det

[
δy (t)

δz (t′)

] ∫
dα

2π

(
exp

[
− i}α

2f (T )
2

2

∫ T

0

dt

f (t)
2

])

= det

[
δy (t)

δz (t′)

]
1√

2πi}f (T )
2 ∫ T

0
dt

f(t)2

The Jacobian will be evaluated using the relation det (X) = exp (tr (ln (X))) .
Taking the functional derivative of y (t) in terms of z (t) gives

δy (t)

δz (t′)
=

δ

δz (t′)

(
z (t) + f (t)

∫ t

0

ds
ḟ (s)

f (s)
2 z (s)

)

=
δ

δz (t′)

(
z (t) + f (t)

∫ T

0

ds θ (t− s) ḟ (s)

f (s)
2 z (s)

)

= δ (t− t′) +
f (t) ḟ (t′)

f (t′)
2 θ (t− t′)

and so

det

[
δy (t)

δz (t′)

]
= det

[
δ (t− t′) +

f (t) ḟ (t′)

f (t′)
2 θ (t− t′)

]

= exp

[
tr

[
ln

[
δ (t− t′) +

f (t) ḟ (t′)

f (t′)
2 θ (t− t′)

]]]
Expanding the ln we find that only the first term survives the trace (tr) due to
the θ functions. The trace operation, tr, is defined as

tr (F (t, t′) ≡
∫
dtdt′δ (t− t′)F (t, t′) =

∫
dtF (t, t)

The second order term in the expansion of ln contains

tr

(∫
dt′′θ (t− t′′) θ (t′′ − t′)

)
=

∫
dtdt′′θ (t− t′′) θ (t′′ − t) = 0
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This vanishes because both θ functions cannot be satisfied at the same time.
Hence

det

[
δy (t)

δz (t′)

]
= exp

[
tr

[
f (t) ḟ (t′)

f (t′)
2 θ (t− t′)

]]

= exp

[∫ T

0

dt
ḟ (t)

f (t)
θ (0)

]

= exp

[
1

2

∫ T

0

dt
ḟ (t)

f (t)

]

=

(
f (T )

f (0)

)1/2

Note that we have used θ (0) = 1/2 which follows from combining

θ (t) = lim
ε→0

∫
dw

2πi

eiwt

w − iε

with 1/ (w − iε) = PV (1/w) + iπδ (w) where PV stands for the Cauchy Prin-
cipal Value.
Next we have to solve for f (t) .Note first that by definition the classical

solution qcl (t) satisfies (
∂ 2
t + V ′ (qcl (t))

)
qcl (t) = 0

where, of course, V ′ (qcl (t)) ≡ (∂yV (y))y=qcl(t)
. Taking the time derivative of

this equation yields (
∂ 2
t + V ′′ (qcl (t))

)
q̇cl (t) = 0

where V ′′ (qcl (t)) =
(
∂ 2
y V (y)

)
y=qcl(t)

and so one solution for f (t) is q̇cl (t) .
We are solving a second order differential equation and so there must be two

independent solutions. The second solution can be found using the Wronskian.
Let two linearly indepedent solutions of a differential equation be h1 (t) and
h2 (t) , then the Wronskian is defined as

W (t) = h1∂th2 − h2∂th1

For a differential equation of the form we have here, i.e,
(
∂ 2
t +Q (t)

)
h (t) = 0

we find that taking ∂t of W (t) yields zero, i.e., ∂tW (t) = 0 and so W (t) =
constant (NOTE: W = constant holds, in general terms, only for the particular
form of differential equation considered here. In general W is not constant.).
If we have found one nontrivial solution h1, by whatever technique, then we
can find another linearly independent solution h2 by solving W = constant
= h1∂th2 − h2∂th1 for h2 in term of h1. Doing this yields

h2 (t) = h1 (t)

∫ t dt′

h1 (t′)
2

85



The lower limit on the integral is not specified since it will be determined by
the boundary conditions. For the same reason the overall constant on the right
hand side has been set to one. This is OK since the general solution is a linear
combination of h1 and h2 with coeffi cients that are determined by the boundary
conditions, i.e., the general solution is h (t) = αh1 (t) + βh2 (t) . Apply this to
the case here by setting the first solution we found q̇cl (t) equal to h1 (t), then
compute h2 (t) and finally take a linear combination we get

f (t) = αq̇cl (t) + βq̇cl (t)

∫ t dt′

q̇cl (t)
2

Here α and β are the constants of integration which are specified by the bound-
ary conditions.

15 Propagators versus Greens Functions

Throughout this section we use the notation δ (· · · ) for the Dirac delta function.

15.1 Diffusion Type Equations

Consider the "free" diffusion equation(
∂t −D ~∂2

)
φ (~r, t) = 0

The general solution can be written as

φ (~r, t) =

∫
d3k a

(
~k
)

exp
[
i~k · ~r −D~k2t

]
φ (~r, t) can be related to φ (~r, 0) , the initial field distribution, in the following
way. Fourier Transform

φ (~r, 0) =

∫
d3k a

(
~k
)

exp
[
i~k · ~r

]
to get

a
(
~k
)

=

∫
d3r

(2π)
3 φ (~r, 0) exp

[
−i~k · ~r

]
Substitute this into φ (~r, t) to get

φ (~r, t) =

∫
d3k

∫
d3r′

(2π)
3 φ (~r′, 0) exp

[
i~k · (~r − ~r′)−D~k2t

]
=

∫
d3r′

(∫
d3k

(2π)
3 exp

[
i~k · (~r − ~r′)−D~k2t

])
φ (~r′, 0)

≡
∫
d3r′K (~r − ~r′, t)φ (~r′, 0)
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with

K (~r − ~r′, t) =

∫
d3k

(2π)
3 exp

[
i~k · (~r − ~r′)−D~k2t

]
=

(
1

4πDt

)3/2

exp

[
− (~r − ~r′)2

4Dt

]
K (~r − ~r′, t) is called "the propagator". Note that K (~r − ~r′, t) has the initial
condition

K (~r − ~r′, 0) = δ (~r − ~r′) = δ (x− x′) δ (y − y′) δ (z − z′)

which means that

φ (~r, 0) =

∫
d3r′K (~r − ~r′, 0)φ (~r′, 0)

=

∫
d3r′δ (~r − ~r′)φ (~r′, 0)

= φ (~r, 0)

as one would expect. Thus the propagator actually does propagate the initial
field φ (~r, 0) forward in time.
Now consider the Greens function for the same differential operator defined

(up to boundary and initial conditions which are sorted out below) by(
∂t −D ~∂2

)
G (~r − ~r′, t− t′) = δ (~r − ~r′) δ (t− t′)

The fact that the differential operator
(
∂t −D ~∂2

)
is independent of time and

space coordinates, i.e., independent of t and ~r implies that the Greens func-
tion is time and space translation invariant, i.e., in general one should write
G (~r, ~r′, t, t′) but because of the time and space translation invariance it can be
written as G (~r − ~r′, t− t′) . How this works is shown in the Appendix. Because
of the translation invariance we can, without loss of generality, set ~r′ and t′ both
equal to zero while deriving the general form for G. Nonzero values of ~r′ and
t′ can be accounted for by simply replacing ~r with ~r − ~r′ and t with t − t′ in
G (~r, t).
Using Fourier Transforms we can write

G (~r, t) =

∫
d3kdω

(2π)
4 g
(
~k, ω

)
exp

[
i~k · ~r − iωt

]
Substituting into the left hand side of the differential equation for G gives(

∂t −D ~∂2
)
G (~r′, t) =

∫
d3kdω

(2π)
4 g
(
~k, ω

)(
∂t −D~∂2

)
exp

[
i~k · ~r − iωt

]
=

∫
d3kdω

(2π)
4 g
(
~k, ω

)(
−iω +D~k2

)
exp

[
i~k · ~r − iωt

]
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This must be equal to the right hand side∫
d3kdω

(2π)
4 g
(
~k, ω

)(
−iω +D~k2

)
exp

[
i~k · ~r − iωt

]
= δ (~r − ~r′) δ (t− t′)

Noting that by definition∫
d3kdω

(2π)
4 exp

[
i~k · ~r − iωt

]
= δ (~r − ~r′) δ (t− t′)

we find that

g
(
~k, ω

)
=

1

−iω +D~k2
=

i

ω + iD~k2

Hence there is a pole at ω = −iD~k2, i.e., in the lower half ω-plane and we can
use this pole to evaluate the ω integral in the Fourier Transform solution for
G (~r, t). For t > 0 we can close the ω contour in the lower half plane and pick
up the pole (and a factor of −2πi). For t < 0 we can close the ω contour in the
upper half plane but since there is no pole there we get zero. Doing these steps
yields

G (~r, t) = i

∫
d3k

(2π)
4 exp

[
i~k · ~r

] ∫
dω

1

ω + iD~k2
exp [−iωt]

= iθ (t) (−2πi)

∫
d3k

(2π)
4 exp

[
i~k · ~r − i

(
−iD~k2

)
t
]

= θ (t)

∫
d3k

(2π)
3 exp

[
i~k · ~r −D~k2t

]
= θ (t)K (~r, t)

The step function factor

θ (t) =

{
1 for t > 0

0 for t < 0

is present because we get 0 for t < 0 and we get
∫

d3k
(2π)3

exp
[
i~k · ~r −D~k2t

]
=

K (~r, t) for t > 0. The fact that the pole contributes only for t > 0 and hence
the overall factor θ (t) means that G propagates "disturbances" forward in time.
In other words you specify initial conditions and the propagator and Greens
function both then account for the development of those conditions forward in
time. Note that G satisfies the initial condition G (~r, t→ 0+) = K (~r, 0) = δ (~r) .
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Check the relation G = θK directly.(
∂t −D ~∂2

)
G (~r − ~r′, t− t′) =

(
∂t −D ~∂2

)
θ (t− t′)K (~r − ~r′, t− t′)

= δ (t− t′)K (~r − ~r′, t− t′)

+ θ (t− t′)
(
∂t −D ~∂2

)
K (~r − ~r′, t− t′)︸ ︷︷ ︸
=0

= δ (t− t′)K (~r − ~r′, 0)

= δ (t− t′) δ (~r − ~r′)

Finally because G and K are constructed as Fourier Transforms they vanish at
spatial infinity. Note that we can always add a homogeneous solution(s) φ to G
to get whatever boundary conditions we want.

15.2 Schrodinger Type Equations

The same analysis goes through almost unchanged for the Schrodinger type
equation (

i∂t +
}

2m
~∂2

)
ψ (~r, t) = 0

where m is the mass of the particle. The difference is now the pole in ω sits on
the real ω axis and we must choose to circle it in the correct way in order to
obtain propagation forward in time, i.e, the retarded propagator. The relation
between G and K now contains a factor of −i ,i.e., G (~r, t) = −iθ (t)K (~r, t) .
Explicitly, for the Schrodinger case we have

ψ (~r, t) =

∫
d3k a

(
~k
)

exp

[
i~k · ~r − i}

~k2

2m
t

]

and so

ψ (~r, 0) =

∫
d3k a

(
~k
)

exp
[
i~k · ~r

]
Inverse Fourier Transforming gives

a
(
~k
)

=

∫
d3r

(2π)
3 exp

[
−i~k · ~r

]
ψ (~r, 0)

and substituting back into ψ (~r, t) and rearranging we get

ψ (~r, t) =

∫
d3r′

(∫
d3k

(2π)
3 exp

[
i~k · (~r − ~r′)− i}

~k2

2m
t

])
ψ (~r′, 0)

≡
∫
d3r′K (~r − ~r′, t)ψ (~r′, 0)
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with

K (~r − ~r′, t) =

∫
d3k

(2π)
3 exp

[
i~k · (~r − ~r′)− i}

~k2

2m
t

]

=
1

(2π)
3

(
π

}it/2m

)3/2

exp

[
− (~r − ~r′)2

i4}t/2m

]

=
( m

2πi}t

)3/2

exp
[
i
m

2}t
(~r − ~r′)2

]
15.3 Helmholtz Equation

The Helmoholtz equation is the wave equation for single frequency, i.e., monochromati2c,
waves. The wave equation is given by(

1

c2
∂2
t − ~∂

)
Φ (~r, t) = 0

where c is the speed of propagation of the waves. We are working in 3D and so
~∂2 = ∂2

x + ∂2
y + ∂2

z .

Monochromatic For the monochromatic case substitute

Φ (~r, t) = φ (~r) e−iωt

where ω = 2πf = ck = 2π/λ with λ = wavelength and f being the temporal
frequency (in say Hertz). With this substitution the wave equation reduces to
the Helmholtz equation (

~∂2 + k2
)
φ (~r) = 0

This is a homogeneous linear differential equation with constant coeffi cients and
so the basic solution is an exponential

exp [i~p · ~r] = exp [i (pxx+ pyy + pzz)]

Substituting the basic solution into Helmholtz yields

~p2 = k2

Letting pz = γ and changing notation to βx = px and βy = py the solution is
simply

γ
(
~β
)

= ±
√
k2 − ~β

2
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Propagating versus Evanescent For k2 > ~β
2
, γ
(
~β
)
is real but if k2 < ~β

2

then γ
(
~β
)

= ±i
√
~β

2
− k2 = ±i

∣∣∣γ (~β)∣∣∣ . In the real case exp
[
±iγ

(
~β
)
z
]
os-

cillates along z but for the imaginary case exp
[
±iγ

(
~β
)
z
]

= exp
[
∓
∣∣∣γ (~β)∣∣∣ z]

which exponentially decreases or increases with increasing z. The real case is
termed "propgating" and the imaginary case is termed "evanescent". Both are
important and are needed to get a full solution in many "real world" problems

but there are also lots of "real world" problems where φ̃±
(
~β
)
are nonzero only

for ~β
2
< k2 in which case only the propagating terms are required.

Using superposition (the differential equation is linear in φ and so superpo-
sition holds) we can write any solution in the form

φ (~r) =

∫
d2β

(
φ̃+

(
~β
)
ei
~β·~ρ+iγ(~β)z + φ̃−

(
~β
)
ei
~β·~ρ−iγ(~β)z

)
where ~ρ = (x, y) . There are two coeffi cients φ̃+ and φ̃− of course because the
Helmholtz equation is second order.
With the choice e−iωt the full time dependent basic solution is ei~p·~r−iωt. The

phase of this function is given by ~p · ~r − ωt and surfaces of constant phase,
termed wavefronts, are solutions to ~p · ~r − ωt = constant. Separating ~r into
the sum of components parallel and perpendicular to ~p, i.e., ~r = ~r‖ + ~r⊥ gives
~r ·~p = ~r‖ ·~p and ~r⊥ ·~p = 0. Hence the phase increases for shifts in position in the
direction of ~r‖ and is constant for changes in position in the plane perpendicular
to ~r‖. In other words the surfaces of constant phase or the wavefronts are planes
with their normal in direction of ~p. (exp [i~p · ~r − ωt] is called a "plane wave"
for this reason.) To maintain a constant phase as t increases, the position of
every wavefront must move in the +~r‖ direction. Letting the unit vector in the
direction of ~p be p̂ = ~p/ |~p| = ~p/k so that ~r‖ (t) = r‖ (t) p̂ with r‖ (t) the position
in the p̂ direction of a given wavefront gives ~r‖ (t) · ~p − ωt = r‖ (t) k − ωt =
constant. Taking the derivative of both sides w.r.t. t yields ∂tr‖ (t) = ω/k =
λf = the speed of propagation of the wavefronts and hence of the plane wave
itself.

15.3.1 Helmholtz propagator

Consider a case where the solution for φ (~r) is a superposition of plane waves

all propagating generically in the +z direction, i.e., φ̃−
(
~β
)

= 0, in which case

φ (~r) = φ (~ρ, z) =

∫
d2βφ̃+

(
~β
)
ei
~β·~ρ+iγ(~β)z

For z = 0 we have

φ (~ρ, 0) =

∫
d2βφ̃+

(
~β
)
ei
~β·~ρ
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Inverse Fourier transforming gives

φ̃+

(
~β
)

=

∫
d2ρ

(2π)
2 e
−i~β·~ρφ (~ρ, 0)

Substituting above and rearranging the order of the integrals gives

φ (~ρ, z) =

∫
d2ρ′

∫
d2β

(2π)
2 e
i~β·(~ρ−~ρ′)+iγ(~β)zφ

(
~ρ′, 0

)
Hence the propagator is given by

K
(
~ρ− ~ρ′, z

)
=

∫
d2β

(2π)
2 e
i~β·(~ρ−~ρ′)+iγ(~β)z

or

φ (~ρ, z) =

∫
d2ρ′K

(
~ρ− ~ρ′, z

)
φ
(
~ρ′, 0

)
Note that

K
(
~ρ− ~ρ′, 0

)
= δ

(
~ρ− ~ρ′

)
Setting z = 0 in K therefore gives back exactly the input field. This is an exact
solution for all z, in empty space, given input field φ (~ρ, 0) .

Fresnel Propagator Expanding

γ
(
~β
)

= k

√
1−

~β
2

k2
' k −

~β
2

2k

which, after integration over ~β, yields the Fresnel propagator.

KFresnel

(
~ρ− ~ρ′, z

)
=

1

iλz
eikz+ik(~ρ−~ρ

′)
2
/2z

Obviously the Fresnel propagator is an approximation to the exact propagator.

15.3.2 Helmholtz Greens Functions

Plane Wave Representation The Greens function G must statisfy the in-
homogeneous equation(

~∂2 + k2
)
G (~r − ~r′) = δ (~r − ~r′) ≡ δ (x− x′) δ (y − y′) δ (z − z′)

Using the superposition principle we can write

G (~r − ~r′) =

∫
d3p

(2π)
3 G̃ (~p) ei~p·(~r−~r

′)
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and so (
~∂2 + k2

)
G (~r − ~r′) =

∫
d3p

(2π)
3 G̃ (~p)

(
−~p2 + k2

)
ei~p·(~r−~r

′)

Using the plane wave or Fourier representation of the delta function

δ (~r − ~r′) =

∫
d3p

(2π)
2 e
i~p·(~r−~r′)

the solution for G̃ (~p) is given by

G̃ (~p) = − 1

~p2 − k2

Hence

G (~r − ~r′) = −
∫

d3p

(2π)
3

ei~p·(~r−~r
′)

~p2 − k2

Do the pz integral first and use the ~β, γ and ~ρ notation from above

G (~r − ~r′) = −
∫

d2β

(2π)
3 e
i~β·(~ρ−~ρ′)

∫
dpz

eipz·(z−z
′)

p2
z −

(
k2 − ~β

2
)

= −
∫

d2β

(2π)
3 e
i~β·(~ρ−~ρ′)

∫
dpz

eipz·(z−z
′)(

pz + γ
(
~β
))(

pz − γ
(
~β
))

For z > z′ we close the contour in the upper half plane and include the pz =

γ
(
~β
)
pole. This gives

G (~r − ~r′) = G
(
~ρ− ~ρ′, z − z′

)
= −i

∫
d2β

(2π)
2

ei
~β·(~ρ−~ρ′)+iγ(~β)(z−z′)

2γ
(
~β
)

Setting z′ = 0 it is obvious that

2∂zG
(
~ρ− ~ρ′, z

)
= K

(
~ρ− ~ρ′, z

)
Spherical Wave Representation Start with

G (~r − ~r′) = −
∫

d3p

(2π)
3

ei~p·(~r−~r
′)

~p2 − k2

but work in spherical polar coordinates (r, θ, ϕ). First set ~r′ = 0 since, to get it
back, we merely have to replace it with ~r − ~r′ and second, w.l.o.g., we can take
~r to be along the z direction for the evaluation of the integral. Then we have

G (~r) = − 1

(2π)
3

∫ ∞
0

p2dp

∫ π

0

sin (θ) dθ

∫ 2π

0

dϕ
eιpr cos(θ)

p2 − k2
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where p = |~p| and r = |~r| . The dϕ integral yields 2π. Using sin (θ) dθ =
−d (cos (θ)) and replacing the dummy integration variable cos (θ) with X we
have

G (~r) = − 1

(2π)
2

∫ ∞
0

dp
p2

p2 − k2

∫ 1

−1

dXeiprX

= − 1

(2π)
2

∫ ∞
0

dp
p2

p2 − k2

1

ipr

(
eipr − e−ipr

)
= − 1

(2π)
2
ir

∫ ∞
0

dp
p

p2 − k2

(
eipr − e−ipr

)
Let p→ −p in the e−ipr integration∫ ∞

0

dp
p

p2 − k2

(
−e−ipr

)
=

∫ −∞
0

d (−p) −p
p2 − k2

(
−eipr

)
=

∫ 0

−∞
dp

p

p2 − k2
eipr

and so

G (~r) = − 1

(2π)
2
ir

∫ ∞
−∞

dp
p

p2 − k2
eipr

= − 1

(2π)
2
ir

∫ ∞
−∞

dp
p

(p− k) (p+ k)
eipr

But r ≥ 0 so we need to close the contour in upper half plane. Including the
p = k pole inside the contour yields

G (~r) = − 1

(2π)
2
ir

2πi
k

2k
eikr

= − 1

4πr
eikr

which, accounting for the e−iωt time dependence is a outgoing spherical wave.
The phase here is kr and so surfaces of constant phase correspond to spheres.
Had we included the p = −k pole inside the contour we would have an incoming
spherical wave.
NOTE: Setting k = 0 gives the Greens function for the Laplacian, i.e,

GLaplacian (~r) = − 1

4πr

with
~∂2GLaplacian (~r) = δ (~r)

Finally since r = |~r| replacing ~r with ~r − ~r′ gives

G (~r − ~r′) = − 1

4π |~r − ~r′|e
ik|~r−~r′|
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Paraxial Wave Equation The paraxial wave equation, which has the same
form as the Schrodinger equation is obtained from the Helmholtz equation by
making the substitution

φ (~r) = eikzψ (~ρ, z)

where ψ (ρ, z) is taken to vary very slowly with z compared to eikz, i.e.,∣∣∂2
zψ (~ρ, z)

∣∣
k |∂zψ (~ρ, z)| � 1

which is the "paraxial approximation".
Substituting φ (~r) = eikzψ (~ρ, z) into the Helmholtz equation gives, using

~∂2
⊥ = ∂2

x + ∂2
y , (

~∂2
⊥ − k2 + 2ik∂z + ∂2

z

)
ψ (~ρ, z) + k2ψ (~ρ, z) = 0

Cancelling the "k2" terms and dropping the ∂2
zψ term gives(

2ik∂z + ~∂2
⊥

)
ψ (~ρ, z) = 0

which has the same mathematical form as the free (no potential energy) Schrodinger
equation in 2D with z playing the role of time.
Had we included a position dependent index of refraction, n (~r) = n (~ρ, z)

which, simplifying things a bit, modifies the Helmholtz equation to be(
~∂2 + n (~r)

2
k2
)
φ (~r) = 0

and then made the paraxial approximation we would get(
2ik∂z + ~∂2

⊥ +
(
n (~ρ, z)

2 − 1
)
k2
)
ψ (~ρ, z) = 0

with
(
n (~ρ, z)

2 − 1
)
k2 being the equivalent of the negative of the potential

energy in the Schrodinger equation.

15.4 Wave Equation Greens Function

The wave equation is (
1

c2
∂2
t − ~∂2

)
φ (~r, t) = 0

where as usual ~r = (x1 = x, x2 = y, x3 = z) and c is the speed of propagation
of the waves.
The wave equation is a homogeneous linear partial differential equation with

constant coeffi cients and so, barring degeneracy, the basic form of the solution
is an exponential which we will write as exp [i~p · ~r − iωt] .
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The Greens function must satisfy(
1

c2
∂2
t − ~∂2

)
G (~r − ~r′, t− t′) = δ (t− t′) δ (~r − ~r′)

Combining the fact that(
1

c2
∂2
t − ~∂2

)
ei~p·~r−iωt =

(
−ω

2

c2
+ ~p2

)
ei~p·~r−iωt

with the fact that, from Fourier transforms,

δ (t− t′) δ (~r − ~r′) = δ (t− t′) δ (x− x′) δ (y − y′) δ (z − z′)

=

∫ +∞

−∞

dωd3p

(2π)
4 e

i~p·(~r−~r′)−iω(t−t′)

we get the general form for G

G (~r − ~r′, t− t′) =

∫ +∞

−∞

dωd3p

(2π)
4

ei~p·(~r−~r
′)−iω(t−t′)(

~p2 − ω2

c2

)
=

∫ +∞

−∞

dω

(2π)
e−iω(t−t′)

∫ +∞

−∞

d3p

(2π)
3

ei~p·(~r−~r
′)(

~p2 − ω2

c2

)
Looking at the spherical wave representation of the Greens function for the
Helmhotz equation from above we have

G (~r − ~r′, t− t′) =

∫ +∞

−∞

dω

(2π)
e−iω(t−t′) 4π

|~r − ~r′|e
ik|~r−~r′|

with k = ω/c. Changing the integration variable to k using ω = ck gives

G (~r − ~r′, t− t′) =
4πc

r

∫ +∞

−∞

dk

(2π)
eik|~r−~r

′|−ick(t−t′)

=
4πc

|~r − ~r′|δ (|~r − ~r′| − c (t− t′))

where the last line follows from the Fourier transform representation of Dirac
delta functions.
It’s very interesting that the Greens function for the wave equation reduces

to a Dirac delta function in precisely 3 space plus 1 time dimension. The units
of a Dirac delta function are the reciprocal of the units of its argument, hence
δ (t− t′) has units of 1/time and δ (~r − ~r′) = δ (x− x′) δ (y − y′) δ (z − z′) has
units of 1/length3. The units of

(
1
c2 ∂

2
t − ~∂2

)
are 1/length2 hence we have that

the units of G must be 1/(length× time) and this is precisely the units of G
above.
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16 Scalar and Vector Diffraction

16.1 Maxwells Equations→Wave Equation
The macroscopic Maxwells equations (Jackson’s nomenclature) are

~∂ × ~E = −∂t ~B
∂ × ~H = ~J + ∂t ~D

∂ · ~D = ρ
~∂ · ~B = 0

where ~D = ε ~E and ~B = µ ~H with ε and µ being material dependent and ρ and
~J being the "free" electric charge and electric current densities respectively.
NOTE: The above equations are valid in the "linear approximation" to the

macroscopic Maxwells equations. Ideally, to account for properties of charges in
a material, at least at the classical nonrelatvistic level, one would need to solve,
simultaneously, Newtons equations for the motion of all the charged particles in
the material, e.g., the motion of all the electrons and protons (or nuclei), and,
the microscopic Maxwells equations with ρ and ~J being the total charge and
current densities of all the particles. Obviously this is not possible at least in any
practical sense. The "linear approximation" treats all the bound charges in the
material, i.e., the electrons and nuclei, to be bound into atoms and molecules,
and the solution to Newtons laws is approximated as a linear response of the
material to the local electric and magnectic fields. That is the electric and
magnitic polarizabilities of the material are taken to depend linearly on ~E and
~B. In this way the free space values ε0 and µ0 are converted to ε and µ. Going
beyond this linear regime is generally known as "nonlinear optics". It should
be remembered that the higher order nonlinear terms are always there (along
with relativistic and quantum effects) but they are generally extremely small
and hence negligable. It was only with the invention of lasers that electric and
magnetic fields could be produced with large enough magnitudes to the make
the effect of the nonlinear terms non-negligable. The so called "free" charge and
current densities, ρ and ~J above, then pertain to any left over unbound charge
that is present.
Take the curl of the curl of ~E equation and treat ε and µ as constants, set

ρ and ~J both to zero,

~∂ ×
(
~∂ × ~E

)
= −∂t

(
~∂ × ~B

)
= −µ∂t

(
~∂ × ~H

)
= −µε∂2

t
~E

But, in component form,

~∂ ×
(
~∂ × ~E

)
= x̂iεijk∂jεklm∂lEm
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where x̂i with 1 = 1, 2, 3 are the x, y, z unit vectors, respectively, and εijk is
the totally antisymmetric Levi-Civita tensor, i.e., it equals one when i, j, k is
an even permulation of 1,2,3, minus one for an odd permutation and is zero
otherwise. Hence we have εijkεklm = εijkεlmk. k is doubly repeated and hence
summed over 1,2,3, that is

εijkεlmk = εij1εlm1 + εij2εlm2 + εij3εlm3

Consider the first term which is non-zero only if i, j, l,m take the values 2 and
3. If i = l then j = m and εij1εlm1 = εij1εij1 = (εij1)

2
= +1 (no sum on i and

j) whereas if i = m then j = l and εij1εlm1 = εij1εji1 = − (εij1)
2

= −1. Doing
the same for the other terms and putting the results together gives the identity

εijkεlmk = δilδjm − δimδjl

Using this above gives

x̂iεijkεklm∂j∂lEm = x̂i (δilδjm − δimδjl) ∂j∂lEm
= x̂i (∂i∂mEm − ∂j∂jEi)

= ~∂
(
~∂ · ~E

)
− ~∂2 ~E

But ~∂ · ~E = 0 since ρ = 0 and ε is constant. Combining these results gives(
~∂2 − µε∂2

t

)
~E = 0

or in component form (
~∂2 − µε∂2

t

)
Ei = 0

and each component of ~E satisfies the wave equation. A similar analysis yields(
~∂2 − µε∂2

t

)
Bi = 0

But
(
~∂2 − µε∂2

t

)
Ei = 0 is a linear homogeneous differential equation with

constant coeffi cients and so the basic solution (neglecting degeneracies) is an

exponential which, in monochromatic plane wave form, is exp
[
i~k · ~r − iωt

]
.

Defining c = 1/
√
µε which is the speed of light in the material and subsituting

this into the wave equation yields the constraint

~k2 =
ω2

c2
=⇒ ~k = ±ω

c
k̂

with k̂ the unit vector in the direction of propagation. ~∂ · ~E = 0 =⇒ ~k · ~E = 0
and so ~E is perpendicular to the direction of propagation of the plane wave.
Similarly ~∂ · ~B = 0 =⇒ ~k · ~B = 0 and ~B is perpendicular to the direction of
propagation of the plane wave.
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Writing ~E (~r, t) = E (~r) e−iωt and using the fact that because the wave
equation for ~E (and for ~B) is linear, superposition holds and we can write any
solution for ~E (~r) with ~r = (~ρ, z) = (x, y, z) as

~E (~r) = ~E (~ρ, z) =

∫
d2β

∑
p

êp

(
β̂
)(

Ẽ+
p

(
~β
)
ei
~k·~ρ+iγ(~β)z + Ẽ−p

(
~β
)
ei
~k·~ρ−iγ(~β)z

)

Here γ
(
~β
)

=

√
k2 − ~β

2
=

√
ω2/c2 − ~β

2
and so ~k = ~β + γ

(
~β
)
z with ~k · ~k =

k2 = ω2/c2, êp

(
β̂
)
, with p = 1, 2, are two unit vectors perpendicular to ~k and to

each other defined so that ê1

(
β̂
)
× ê2

(
β̂
)

= k̂
(
β̂
)
. Ẽ±p

(
~β
)
are the amplitudes

of the ±z propagating plane waves as function of polarization, p, and ~β.
See the discussion in the section on "Propagators versus Greens Functions"

for a description of the difference between evanescent and propagating plane
waves. The solution for ~E (~ρ, z) has the same general form as that for φ (~ρ, z)
the section on "Propagators versus Greens Functions" and following the same
steps to derive the vector propagator for ~E (~ρ, z) gives, again considering only
+z propagation ∑

p

êp

(
β̂
)
Ẽ+
p

(
~β
)

=

∫
d2ρ

(2π)
2 e
−i~β·~ρ ~E (~ρ, 0)

Take the dot product with êp′
(
β̂
)
and us the fact that given how êp

(
β̂
)
have

been defined we have
êp′
(
β̂
)
· êp

(
β̂
)

= δp′,p

with δp′,p being the Kronecker delta. Hence we get

Ẽp

(
~β
)

=

∫
d2ρ

(2π)
2 e
−i~β·~ρêp

(
β̂
)
· ~E (~ρ, 0)

Substituting back into the general solution above for ~E (~ρ, z) (with Ẽ−p
(
~β
)

= 0)

gives (being careful about dummy integrations values)

~E (~ρ, z) =

∫
d2ρ′

∫
d2β

(2π)
2 e
i~β·(~ρ−~ρ′)+iγ(~β)z

2∑
p=1

êp

(
β̂
)(

êp

(
β̂
)
· ~E (~ρ, 0)

)
In component form this is

Ei (~ρ, z) =

∫
d2ρ′

∫
d2β

(2π)
2 e
i~β·(~ρ−~ρ′)+iγ(~β)z

2∑
p=1

êp,i

(
β̂
)
êp,j

(
β̂
)
Ej (~ρ, 0)

where êp,i
(
β̂
)
is the ith or x, y, z component of the polarization unit vector

êp

(
β̂
)
.
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Now, noting that ê1

(
β̂
)
, ê2

(
β̂
)
and k̂

(
β̂
)
form a complete set of unit basis

vectors in 3D we have

~E = ê1

(
β̂
)(

ê1

(
β̂
)
· ~E
)

+ ê2

(
β̂
)(

ê2

(
β̂
)
· ~E
)

+ k̂
(
β̂
)(

k̂
(
β̂
)
· ~E
)

Rearranging gives

ê1

(
β̂
)(

ê1

(
β̂
)
· ~E
)

+ ê2

(
β̂
)(

ê2

(
β̂
)
· ~E
)

= ~E − k̂
(
β̂
)(

k̂
(
β̂
)
· ~E
)

= ~E −
~k
(
β̂
)

k

~k
(
β̂
)

k
· ~E


which in component form is[

ê1

(
β̂
)(

ê1

(
β̂
)
· ~E
)

+ ê2

(
β̂
)(

ê2

(
β̂
)
· ~E
)]

i
= Ei −

kikj
k2

Ej

=

(
δi,j −

kikj
k2

)
Ej

Hence we have

Ei (~ρ, z) =

∫
d2ρ′

∫
d2β

(2π)
2 e
i~β·(~ρ−~ρ′)+iγ(~β)z

(
δi,j −

kikj
k2

)
Ej (~ρ, 0)

and the vector propagator is given by

Ki,j

(
~ρ− ~ρ′, z

)
=

∫
d2β

(2π)
2 e
i~β·(~ρ−~ρ′)+iγ(~β)z

(
δi,j −

kikj
k2

)
=

(
δi,j +

∂i∂j
k2

)
K
(
~ρ− ~ρ′, z

)
where K

(
~ρ− ~ρ′, z

)
is the scalar propagator derived above.

16.2 Diffraction?

First, note that both the scalar propagator K
(
~ρ− ~ρ′, z

)
and the vector propa-

gator Ki,j

(
~ρ− ~ρ′, z

)
are exact propagators for monochromatic waves. There is

no approximation.
Second, note that both propagators reduce to a delta function for z = 0 and

therefore they give back the z = 0 starting field distribution exactly. (For the
vector propagator we have to assume input field ~E (~ρ, 0) satisfies Gauss law,

i.e.,
(
~∂ · ~E (~ρ, z)

)
z=0

= 0, in which case the output field satisfies Gauss law.)

So, if both propagators are exact why do people talk about "Kirchoff Dif-
fraction", for example, as a approximation. The approximation is in the input
fields φ (~ρ, 0) and ~E (~ρ, 0) . In most or almost all cases the input fields themselves
are approximations to an exact solution. For example in the case of diffraction
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through an aperture (a hole in a thin opaque plate or screen) the exact field
~E (~ρ, 0) must satisfy Maxwells equations and the associated boundary condi-
tions on the edges of the aperture. But the effect of the boundary conditions
on the field, which is large at the edge of the aperture, decays away, nomi-
nally exponentially with distance, in a few wavelengths from the edge. Hence,
if the aperture is many wavelengths in size (in all directions), then, more than
a few wavelengths from the edge, the transmitted field through the aperture is
equal, to a good approximation, to the incident field on the aperture. Hence
using incident field distribution and ignoring the effect of the edge caused by
the boundary conditions is where the approximation lies.
NOTE: The word "thin" in the statement "a hole in a thin opaque plate or

screen" refers to the ratio of the plate thickness to the size of the hole being
much less than 1. As the thickness of the plate increases, with the hole size
fixed, the "hole" is trending toward becoming a tube. When the thickness is
larger than the aperture size then it is definitely a tube. Think fiber optics. In
this case the system must be treated as a waveguide, i.e., the eigenmodes must
be accounted for using either Maxwell and the boundary conditions to get an
exact result, or using some valid approximation to Maxwell and the boundary
conditions. But, it is still true that the diffraction downstream of the aperture is
given exactly, using the above propagators with the field distribution (calculated
using the eigenmodes of the tube for example) exiting the aperture.

17 Stationary Phase, Steepest Descent, Stirling

17.1 Stationary Phase

Consider the integral where f (x) is a real valued function of x

I =

∫ b

a

dx exp [if (x)]

where b > a.
The dominant contribution to the integral comes from the region where

the phase, f (x) , is constant and/or varies slowly. For a smoothly varying
function f (x) the regions where f (x) is slowly varying are centered around the
"stationary phase points" xn of f (x), i.e., positions where

∂xf (x)|x=xn
= 0

NOTE: An equivalent notation is sometimes used

∂xf (x)|x=xn
= (∂xf) (xn) ≡ f ′ (xn)

The meaning is first compute the function which is the derivative of f (x) w.r.t.
to x then evaluate it at xn hence (∂f) (xn) . If f (x) does not have any explicit
dependence on xn then we have

∂xf (x)|x=xn
= (∂xf) (xn) ≡ f ′ (xn) = ∂xnf (xn)
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Consider just a single stationary phase point x0 which satisfies

a� x0 � b

by which we mean

x0 − a�
√

1

(∂2
xf) (x0)

and

b− x0 �
√

1

(∂2
xf) (x0)

so that x0 is far from the endpoints of the integration. Expanding f (x) to
second order around x0

f (x0 + η) = f (x0) + (∂xf) (x0) η +
1

2

(
d2
xf
)

(x0) η2 + · · ·

= f (x0) +
1

2

(
∂2
xf
)

(x0) η2 + · · ·

yields

I ' exp [if (x0)]

∫ +∞

−∞
dη exp

[
i
1

2

(
∂2
xf
)

(x0) η2

]
' exp [if (x0)]

√
2π

(∂2
xf) (x0)

where we have let η range from −∞ to +∞ under the assumption that contri-
butions to the integrals from positions far from x0 are negligable. This is the
method of stationary phase.

17.2 Stirlings Approximation

The same idea as stationary phase can work for integrals of the form

I =

∫ b

a

dx exp [f (x)]

if f (x) has a peak somewhere between a and b and the rms width of f (x) is
much smaller than b− a. Again f (x) is real valued.
Consider the specific example of Stirlings aproximation for the factorial func-

tion n!, defined via the Gamma function Γ (1 + n) = n! with n ≥ 0,

Γ (1 + n) =

∫ ∞
0

dxxn exp [−x]

=

∫ ∞
0

dx exp [n ln (x)− x]
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Note that xn exp [−x]→ 0 for both x→ 0 and x→∞ and is alway non-negative
hence it has a peak value somewhere between x = 0 and x = ∞. The position
of the peak, x0, is given by

∂x (n ln (x)− x)|x=x0
= 0 =⇒ x0 = n

For n� 0, but finite, the peak position x0 = n is far from both 0 and ∞ (any
finite number is always infinitely far from ∞). Les x = x0 + ε = n + ε and
expand about ε = 0 to second order

n ln (x)− x
= n ln (n+ ε)− (n+ ε)

= n
(

ln (n) + ln
(

1 +
ε

n

))
− n− ε

' n ln (n) + n

(
ε

n
− 1

2

( ε
n

)2
)
− n− ε+ · · ·

' n ln (n)− n− 1

2

ε2

n
+ · · ·

Hence, substituting into the integral above

n! = Γ (1 + n) ' exp [n ln (n)− n]×
∫ +∞

−∞
dε exp

[
−1

2

ε2

n

]
' exp [n ln (n)− n]

√
2πn

' nne−n
√

2πn

'
(n
e

)n√
2πn

which is Stirlings approximation for n!.

18 Harmonic Oscillator Path Integral

Lagrangian

L (x, ∂tx, t) =
m

2
(∂tx)

2 − mω2

2
x2 + f (t)x

Equation of motion

∂t
∂L

∂ (∂tx)
− ∂L

∂x
= 0 ⇒ ∂ 2

t x+ ω2x = f/m

Boundary Conditions

x (ta) = xa

x (tb) = xb
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The general solution is the sum of a homogeneous solution xHS (t) and a par-
ticular integral xPI (t). The funtamental form of the homogeneous solution is a
linear combination of exp [−iωt] since(

∂ 2
t + ω2

)
exp [−iωt] = 0

The particular integral has the form

xPI (t) =

∫
dt′G (t− t′) f (t′) /m

with the Greens function G satisfying(
∂ 2
t + ω2

)
G (t− t′) = δ (t− t′)

We need to incorporate the boundary conditions. This will be done by requiring
the homogeneous solution to satisfy the boundary conditions, i.e, xHS (ta) = xa
and xHS (tb) = xb and fixing xPI (tb) = xPI (ta) = 0.
Given this the homogeneous solution can be wrtten as

xHS (t) =
xb sin (ω (t− ta)) + xa sin (ω (tb − t))

sin (ω (tb − ta))

which clearly satisfies the boundary conditions. Also we want x (t) to be a real
function.
To get a G that satifies this we will need to add homogeneous solutions to

the "raw" G defined by

G (t) = −
∫

dq

2π

e−iqt

q2 − ω2

We do not need G to be causal since we have chosen the end point position but
let us start with the causal or retarded G, i.e., G (t < 0) = 0 and and then add
a homogeneous solution to get the necessary boundary conditions on G. First,
pick how to circulate the pole in the denominator so that we get the retarded
propagator. With the numerator of the form exp [−iqt] we need to displace both
poles ±ω into the lower half plane. Then for t > 0 which requires closing the
contour in the lower half plane we encircle the poles and get a nonzero result
but for t < 0 which requires closing the contour in the upper half plane there
are no poles and we get 0. To do this let

q2 − ω2 = (q − ω) (q + ω)

→ (q − (ω − iε)) (q + (ω + iε))
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where ε = 0+. Using this we have

G (t) = −
∫

dq

2π

e−iqt

(q − (ω − iε)) (q + (ω + iε))

=
2πi

2π

(
exp [−i (ω − iε) t]

2ω
+

exp [−i (− (ω + iε)) t]

−2ω

)
θ (t)

=
i

2ω
(−2i sin (ωt)) θ (t)

=
sin (ωt)

ω
θ (t)

where θ (t) is the Heaviside step function. Note that G (t) is real and so given
a real f (t) the solution x (t) will be real.
Test this result

∂t
sin (ωt)

ω
θ (t) = cos (ωt) θ (t) +

sin (ωt)

ω
δ (t) = cos (ωt) θ (t)

∂ 2
t

sin (ωt)

ω
θ (t) = −ω sin (ωt) θ (t) + cos (ωt) δ (t) = −ω2 sin (ωt)

ω
θ (t)︸ ︷︷ ︸

G(t)

+ δ (t)

and so (
∂ 2
t + ω2

)
G (t) = δ (t)

as required and the θ (t) factor shows it is the retarded Greens function.
Using this we have

(
∂ 2
t + ω2

) ∫ tb

ta

dt′G (t− t′) f (t′) /m =

∫ tb

ta

dt′δ (t− t′) f (t′) /m = f (t) /m

which accounts for the inhomogeneous term on the right hand side of the dif-
ferential equation.
Now add a homogenous solution to

∫
Gf/m so that the integral vanishes at

ta and tb First note that∫ tb

ta

dt′G (t− t′) f (t′) /m =

∫ tb

ta

dt′
sin (ω (t− t′))

ω
θ (t− t′) f (t′) /m

=

∫ t

ta

dt′
sin (ω (t− t′))

ω
f (t′) /m

which vanishes automatically at t = 0. At t = tb∫ tb

ta

dt′G (tb − t′) f (t′) /m =

∫ tb

ta

dt′
sin (ω (tb − t′))

ω
θ (tb − t′) f (t′) /m

=

∫ tb

ta

dt′
sin (ω (tb − t′))

ω
f (t′) /m
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This is a constant independent of t.If we multiply it by a homogeneous solution
which vanishes at t = ta and is 1 at t = tb and subtract this from

∫
Gf/m then

the result will vanish at both ta and tb and will solve the inhomogenous equation
with the desired boundary conditions. The homogeneous solution which does
this is sin (ω (t− ta)) / sin (ω (tb − ta)) and we get

xPI (t) =

∫ tb

ta

dt′G (t− t′) f (t′) /m−
(∫ tb

ta

dt′
sin (ω (tb − t′))

ω
f (t′) /m

)
sin (ω (t− ta))

sin (ω (tb − ta))

=

∫ tb

ta

dt′
[

sin (ω (t− t′))
ω

θ (t− t′)− sin (ω (tb − t′))
ω

sin (ω (t− ta))

sin (ω (tb − ta))

]
f (t′) /m

Using 1 = θ (t− t′)+θ (t′ − t) we can combine the terms in square brackets into
a new Greens function which satisfies the desired boundary conditions

g (t− t′) =
1

ω

(
sin (ω (t− t′)) θ (t− t′)− sin (ω (tb − t′))

sin (ω (t− ta))

sin (ω (tb − ta))

)
=

1

ω

(
(sin (ω (t− t′)) sin (ω (tb − ta))− sin (ω (tb − t′)) sin (ω (t− ta)))

θ (t− t′)
sin (ω (tb − ta))

− sin (ω (tb − t′)) sin (ω (t− ta))
θ (t′ − t)

sin (ω (tb − ta))

)
=

1

ω

(
(sin (ω (ta − t′)) sin (ω (tb − t)))

θ (t− t′)
sin (ω (tb − ta))

+ sin (ω (tb − t′)) sin (ω (ta − t))
θ (t′ − t)

sin (ω (tb − ta))

)
This is the standard result for a harmonic oscillator Greens function which
vanishes when either t or t′ equals ta or tb. It can be seen to be just a linear
combination of homogeneous solutions chosen in such a way that it is continuous
but with a discontinuous first derivative so that the second derivative contains
a term proportional to a delta function.
We now have the full solution

x (t) =
xb sin (ω (t− ta)) + xa sin (ω (tb − t))

sin (ω (tb − ta))
+

∫ tb

ta

dt′g (t− t′) f (t′) /m

where tb − ta = T.
Now evaluate the action for the classical solution trajectory x (t)

S =

∫ tb

ta

dtL (x, ∂tx)

=

∫ tb

ta

dt

(
m

2
(∂tx)

2 − mω2

2
x2 + f (t)x

)
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Integrate the first term by parts to get

Sclassical =
m

2
x∂tx|tbta −

∫ tb

ta

dt x

((
m

2
∂ 2
t +

mω2

2

)
x− f (t)

)
=
m

2

(
xb (∂tx)tb − xa (∂tx)ta

)
−
∫ tb

ta

dt x

((
m

2
∂ 2
t +

mω2

2

)
x− f (t)

)
=
m

2

(
xb (∂tx)tb − xa (∂tx)ta

)
+

1

2

∫ tb

ta

dt xf (t)

where in the third line we have used the fact that
(
m
2 ∂

2
t + mω2

2

)
x = f/2.

Substituting the solution for x yields

Sclassical =
mω

2 sin (ω (tb − ta))

[
xb (xb cos (ω (tb − ta))− xa)
−xa (xb − xa cos (ω (tb − ta)))

]
+
m

2

xb
sin (ω (tb − ta))

∫ tb

ta

dt sin (ω (t− ta)) f (t) /m

+
m

2

xa
sin (ω (tb − ta))

∫ tb

ta

dt sin (ω (tb − t)) f (t) /m

+
1

2

∫ tb

ta

dt′
xb sin (ω (t− ta)) + xa sin (ω (tb − t))

sin (ω (tb − ta))
f (t′)

+
1

2

∫ tb

ta

dtdt′f (t) g (t− t′) f (t′) /m

=
mω

2 sin (ω (tb − ta))


xb (xb cos (ω (tb − ta))− xa)
−xa (xb − xa cos (ω (tb − ta)))

+ 2
mωxb

∫ tb
ta
dt sin (ω (t− ta)) f (t)

+ 2
mωxa

∫ tb
ta
dt sin (ω (tb − t)) f (t)


+

1

2m

∫ tb

ta

dtdt′f (t) g (t− t′) f (t′)

***Need to complete***

19 Fluctuation Dissipation Theorem

19.1 Derivation

Start with the partition function for a generic field (or order parameter) φ (~r)

Z =

∫
Dφe−βH[φ]

where Dφ indicates functional integration, β = 1/kBT and H [φ] = Hamiltonian
= functional of φ (~r) .
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The expectation values of φ are given by

〈φ (~r1)φ (~r2) · · ·φ (~rn)〉 =
1

Z

∫
Dφ φ (~r1)φ (~r2) · · ·φ (~rn) e−βH[φ]

where the 1/Z is for normalization.
In order to compute expectation values of φ add the term∫

d~rJ (~r)φ (~r)

to the Hamiltonian to get

Z [J ] =

∫
Dφe−βH[φ]−β

∫
d~rJφ

Z [J ] is the generating functional of moments or correlation functions of φ, i.e.,

1

Z

1

(−β)
n

DnZ [J ]

DJ (~r1)DJ (~r2) · · ·DJ (~rn)

∣∣∣∣
J=0

=
1

Z

∫
Dφ φ (~r1)φ (~r2) · · ·φ (~rn) e−βH[φ]

= 〈φ (~r1)φ (~r2) · · ·φ (~rn)〉

D/DJ (~r) indicates functional differentiation.
Now note that J can be thought of as a linear external "force" or driving

term on φ and so the susceptibility of φ with respect to J is given by

χ (~r, ~r′) =
D 〈φ (~r)〉J
DJ (~r′)

∣∣∣∣
J=0

where the notation 〈· · · 〉J indicates J has not yet been set to zero, i.e., 〈φ (~r)〉J
is the expectation value of φ in the presence of the "force" or driving term J .
But from above

〈φ (~r)〉J = − 1

βZ

DZ [J ]

DJ (~r)
= −kBT

Z

DZ [J ]

DJ (~r)

and so

D 〈φ (~r)〉J
DJ (~r′)

∣∣∣∣
J=0

= −kBT
Z

D2Z [J ]

DJ (~r)DJ (~r′)

∣∣∣∣
J=0

= −kBTβ2 〈φ (~r)φ (~r′)〉

= − 1

kBT
〈φ (~r)φ (~r′)〉

which yields

χ (~r, ~r′) = − 1

kBT
〈φ (~r)φ (~r′)〉

This is how I understand the fluctuation-dissipation theorem.
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19.1.1 Gillespies Paper (Am. J. Phys. 61, p. 1077 (1993))

Heres are two quick ways to get from Gillespies Eq(1) to his Eq(3). There’s no
new physics here just some fun math.
The differential equation is

(M∂t + γ)V (t) = fΓ (t)

M and f are constants, Γ (t) is a "random" function with the given statistics

〈Γ (t)〉 = 0

〈Γ (t) Γ (t′)〉 = δ (t− t′)

The goal is to solve for the statistics of the function V (t) .

Method 1. The solution to the differential equation can be written as

V (t) = f

∫ ∞
0

dt′G (t− t′) Γ (t′)

The Greens function is given by

G (t) =

∫
dω

2π

e−iωt

(−iMω + γ)

=
1

−i2πM

∫
dω

e−iωt

(ω + iγ/M)

=
1

M
e−γt/Mθ (t)

and so

V (t) =
f

M

∫ t

0

dt′e−γ(t−t
′)/M

which vanishes for t = 0.
From the solution for V (t) it follows that

〈V (t)V (t′)〉 = f 2

∫ ∞
0

dt1dt2G (t− t1)G (t′ − t2) 〈Γ (t) Γ (t′)〉

=
f 2

M2
e−γ(t+t

′)/M
∫ ∞

0

dt1e
2γt1/M θ (t− t1) θ (t′ − t1)

For t > t′ we get

〈V (t)V (t′)〉 =
f 2

2γM
e−γ(t+t

′)/M
(
e2γt′/M − 1

)
Now let t′ → t 〈

V (t)
2
〉

=
f 2

2γM

(
1− e−2γt/M

)
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and so 〈
V (t→∞)

2
〉

=
f 2

2γM

Demanding
M

2

〈
V (t→∞)

2
〉

=
1

2
kBT

gives
f =

√
2γkBT

Method 2 The probability distribution functional for V (t) given Γ (t) is

P [V ; Γ] ∼ δD
[

1

f
(M∂t + γ)V − Γ

]
For the slightly more general case of 〈Γ (t)〉 = 0 and 〈Γ (t) Γ (t′)〉 = H (t, t′) , a
Gaussian probability distribution functional for Γ (t) is given by

P [Γ] ∼ exp

[
−
∫
dtdt′Γ (t)

H−1 (t, t′)

2
Γ (t′)

]
The normalizations will be sorted out below. You can keep track of it by in-
cluding the appropriate determinant factors but it just makes things ugly.
The probability for V (t) is then given by

P [V ] =

∫
DΓP [V ; Γ]P [Γ]

∼
∫
DΓ exp

[
−
∫
dtdt′Γ (t)

H−1 (t, t′)

2
Γ (t′)

]
δ

[
(M∂t + γ)V

f
− Γ

]
∼ exp

[
−
∫
dtdt′ ((M∂t + γ)V ) (t)

H−1 (t, t′)

2f 2
((M∂t + γ)V ) (t′)

]
For the specific case of 〈Γ (t) Γ (t′)〉 = δ (t− t′) we have H (t, t′) = δ (t− t′) and
H−1 (t, t′) = δ (t− t′) and so

P [V ] ∼ exp

[
−
∫
dt

((M∂t + γ)V (t))
2

2f 2

]

∼ exp

[
−
∫
dt
V (t)

(
−M2∂ 2

t + γ2
)
V (t)

2f 2

]
after integration by parts in the exponent.
The generating functional for moments of V (t) is given by

Z [J ] =

∫
DV P [V ] ei

∫
dtV (t)J(t)

∼ exp

[
−
∫
dtdt′J (t)

f 2

2
g (t− t′) J (t′)

]
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where (
−M2∂ 2

t + γ2
)
g (t− t′) = δ (t− t′)

Note that

Z [J = 0] = 1 =

∫
DV P [V ]

and therefore the result is properly normalized (all the det’s have cancelled).
Now

〈V (t)V (t′)〉 = f 2g (t− t′)

But

g (t) =
1

M2

∫
dω

2π

e−iωt

(ω2 + γ2/M2)

=
1

M2

∫
dω

2π

e−iωt

(ω + iγ/M) (ω − iγ/M)

=
e−γ|t|/M

2γM

And so
M

2

〈
V (t)

2
〉

=
f 2

4γ
=

1

2
kBT ⇒ f =

√
2γkBT

Same as before.

20 Proof: Bessel Function Closure Relation

Using the integral definition of J0 (x) in terms of exp [ix cos [θ]] gives

∫ ∞
0

dρ ρJ0 (aρ) J0 (bρ) =

∫ ∞
0

dρ ρJ0 (aρ) J0 (−bρ)

=
1

(2π)
2

∫ 2π

0

dθ′dθ

∫ ∞
0

dρ ρ exp
[
iaρ cos (θ)− ibρ cos

(
θ′
)]

The key point is the integrals over θ and θ′ can be shifted by an arbitrary angle
without changing the result. Shift both by the same angle φ and average over
φ.∫ ∞

0

dρ ρJ0 (aρ) J0 (−bρ) =
1

(2π)
2

∫ 2π

0

dθ′dθ

∫ 2π

0

dφ

2π

∫ ∞
0

dρ ρ exp
[
iaρ cos (θ − φ)− ibρ cos

(
θ′ − φ

)]
Letting ~a = a cos (θ) x̂+a sin (θ) ŷ,~b = b cos

(
θ′
)
x̂+b sin

(
θ′
)
ŷ and ~ρ = ρ cos (φ) x̂+

ρ sin (φ) ŷ = xx̂ + yŷ where x̂ and ŷ are the x, y unit vectors respectively, we
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have

1

(2π)
2

∫ 2π

0

dθ′dθ

∫ 2π

0

dφ

2π

∫ ∞
0

dρ ρ exp
[
iaρ cos (θ − φ)− ibρ cos

(
θ′ − φ

)]
=

1

2π

∫ 2π

0

dθ′dθ

∫
dxdy

(2π)
2 exp

[
i~a · ~ρ− i~b · ~ρ

]
=

1

2π

∫ 2π

0

dθ′dθδ
(
~a−~b

)
=

1

2π

∫ 2π

0

dθ′dθδ
(
a cos (θ)− b cos

(
θ′
))
δ
(
a sin (θ)− b sin

(
θ′
))

Let a cos (θ) = ax and a sin (θ) = ay so that a = a2
x + a2

y, and consider the
integral

1

2π

∫ 2π

0

dθ′δ
(
ax − b cos

(
θ′
))
δ
(
ay − b sin

(
θ′
))

=
1

2π

∫ 2π

0

dθ′
ax + b cos

(
θ′
)

ax + b cos
(
θ′
)δ (ax − b cos

(
θ′
))
δ
(
ay − b sin

(
θ′
))

=
1

2π

∫ 2π

0

dθ′2b cos
(
θ′
)
δ
(
a2
x − b2 cos

(
θ′
)2)

δ
(
ay − b sin

(
θ′
))

=
1

2π

∫ 2π

0

dθ′2b cos
(
θ′
)
δ
(
a2
x − b2

(
1− sin

(
θ′
)2))

δ
(
ay − b sin

(
θ′
))

=
1

2π

∫ 2π

0

dθ′2 cos
(
θ′
)
δ

(
a2
x − b2

(
1−

a2
y

b2

))
δ
(ay
b
− sin

(
θ′
))

=
1

2π

∫ 2π

0

dθ′2 cos
(
θ′
)
δ
(
a2 − b2

)
δ
(ay
b
− sin

(
θ′
))

=
1

2π

∫ 2π

0

dθ′
1

b
cos
(
θ′
)
δ (a− b) δ

(ay
b
− sin

(
θ′
))

=
1

2πb
δ (a− b)

∫
d
(
sin
(
θ′
))
δ
(ay
b
− sin

(
θ′
))

︸ ︷︷ ︸
=1

In the last step, because δ (a− b) requires a = b it follows that ay/b must
lie between −1 and +1 and so the integral over d

(
sin
(
θ′
))
must equal 1. Sub-

stituting this result above we get∫ ∞
0

dρ ρJ0 (aρ) J0 (bρ) =
1

b
δ (a− b)
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21 Fokker-Planck Equation

21.1 Derivation

Consider the following differential equation

∂

∂t
X (t) = V (X (t)) +N (t)

where V (X (t)) is a given function of X (t) and N (t) is a noise term, that is,
N (t) is to be treated as a random function.
Let the probability distribution for N (t) to be the particular function ν (t)

be
PN(t) (ν (t))

It follows from the probability mapping approach discussed above that the prob-
ability for X at time t, X (t) , to have the particular value x is given by

PX(t) (x) =

∫
δν (·) δD (x−X (t, x0, ν (·)))PN(t) (ν (·))

where δν (·) indicates integration over all functions ν (t) . Here X (t, x0, ν (·)) is
the solution to the differential equation with initial condition X (0) = x0 and
with the particular function noise function ν (t) and δD (· · · ) is the Dirac delta
function.
To simplify notation we will write X (t, x0, ν (·)) = X (t). Don’t forget that

X (t) depends on ν (·) . The "·" notation is used to make it clear that δν (·) and
ν (·) do not depend on time. Think of δν (·) as being the product

dν (0) dν (∆t) dν (2∆t) dν (3∆t) · · ·

and ν (·) as the set of values

{ν (0) , ν (∆t) , ν (2∆t) , ν (3∆t) , · · · }

as ∆t → 0. Listing out the values this way makes it clear that δν (·) and ν (·)
don’t depend on t. Another way to think about it is, since ν (t) is a random
(assume real valued) function, then at any particular time t it can have any
value between −∞ and +∞.
Take the derivative w.r.t. t on both sides. (The only t dependence on the
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right is the t dependence of X)

∂

∂t
PX(t) (x) =

∫
δν (·) δD (x−X (t))PN(t) (ν (·))

=

∫
δν (·) ∂

∂t
δD (x−X (t))PN(t) (ν (·))

=

∫
δν (·) ∂X (t)

∂t

∂

∂X (t)
δD (x−X (t))PN(t) (ν (·))

= −
∫
δν (·) ∂X (t)

∂t

∂

∂x
δD (x−X (t))PN(t) (ν (·))

= − ∂

∂x

∫
δν (·) ∂X (t)

∂t
δD (x−X (t))PN(t) (ν (·))

= − ∂

∂x

∫
δν (·) (V (X (t)) + ν (t)) δD (x−X (t))PN(t) (ν (·))

= − ∂

∂x

∫
δν (·) (V (x) + ν (t)) δD (x−X (t))PN(t) (ν (·))

= − ∂

∂x
V (x)PX(t) (x)

− ∂

∂x

∫
δν (·) ν (t) δD (x−X (t))PN(t) (ν (·))

The reason for writing ν (t) and not ν (·) is that the factor ν (t) is being evaluated
at the specific time t.
The statistics for the noise function is often chosen to be zero mean and have

a specific autocorrelation function, i.e.,

〈ν (t)〉 = 0

〈ν (t) ν (t′)〉 = C (t− t′)

where the t−t′ is chosen so that the noise statistics are time translation invariant.
One can choose C (t, t′) instead which makes the noise, nominally, not time
translation invariant. The most convenient specific form for PN(t) (ν (t)) that
yields these statistics is a zero mean Gaussian in function space, i.e.,

PN(t) (ν (t)) =
1

normalization
exp

[
−1

2

∫
dtdt′ν (t)C (t, t′)

−1
ν (t′)

]
where C (t, t′)

−1 is the inverse of C (t, t′) ,∫
dt′′C (t, t′′)

−1
C (t′′, t′) = δD (t− t′)

Since PN(t) (ν (t)) occurs to the first power in every term in the differential
equation above, the "normalization" factor cancels out.
Note that C (t, t′)

−1 is generally a differential operator. For example, for

C (t, t′) = exp [−α |t− t′|]
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we have

C (t, t′)
−1

=
1

2α

(
− ∂2

∂t2
+ α2

)
δD (t− t′)

since∫
dt′′C (t, t′′)

−1
C (t′′, t′) =

∫
dt′′

1

2α

(
− ∂2

∂t2
+ α2

)
δD (t− t′′) exp [−α |t′′ − t′|]

=
1

2α

(
− ∂2

∂t2
+ α2

)
exp [−α |t− t′|]

= δD (t− t′)

This is obtained using |t− t′| = sgn (t− t′) (t− t′) where sgn (· · · ) is the sign
of "· · · "

sgn (x) =

{
+1 for x > 0
−1 for x < 0

It follows from this that ∂/∂t sgn (t− t′) = 2δD (t− t′) .(Draw a graph of sgn (t)
from negtive to positive values of t− t′ and think of taking a derivative.)

∂2

∂t2
exp [−α |t− t′|] = −α ∂

∂t

(
∂

∂t
|t− t′|

)
exp [−α |t− t′|]

= −α ∂
∂t

(
∂

∂t
(sgn [(t− t′)]) (t− t′)

)
exp [−α |t− t′|]

= −α ∂
∂t

(2δD (t− t′) (t− t′) + sgn (t− t′)) exp [−α |t− t′|]

use δD (t− t′) f (t− t′) = δD (t− t′) f (0)

for any f (t) to get

= −α ∂
∂t

(sgn (t− t′) exp [−α |t− t′|])

= −2αδD (t− t′) + α2sgn (t− t′)2
exp [−α |t− t′|]

but sgn (t− t′)2
= 1 and so

∂2

∂t2
exp [−α |t− t′|] = −2αδD (t− t′) + α2 exp [−α |t− t′|]

which gives, as above

1

2α

(
− ∂2

∂t2
+ α2

)
exp [−α |t− t′|] = δD (t− t′)

Often the following choice is made for C (t− t′)

C (t− t′) = σ2δD (t− t′)

in which case we have

C (t− t′)−1
=

1

σ2
δD (t− t′)
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This follows from the simple fact that "The inverse of the identity matrix is the
identity matrix." With this choice for the autocorrelation function we have

PN(t) (ν (t)) = exp

[
− 1

2σ2

∫
dt′ν (t′)

2
]

where again we have dropped the normalization factor since it cancels out of
the differential equation and we are being careful to use the dummy integration
varible t′ in the integral.

We can now evaluate
∫
δν (·) ν (t) δD (x−X (t))PN(t) (ν (·)) . We have∫

δν (·) ν (t) δD (x−X (t))PN(t) (ν (·)) = −σ2

∫
δν (·) δD (x−X (t))

δ

δν (t)
exp

[
− 1

2σ2

∫
dt′ν (t′)

2
]

This is because δ/δν (t) is a (functional) derivative. It acts exactly the same
as an ordinary derivative until you get to δν (t′) /δν (t) in which case you get a
Dirac delta function, i.e.,

δν (t′)

δν (t)
= δD (t− t′)

For example

δ

δν (t)

∫
dt′w (t′) ν (t′)

n
=

∫
dt′w (t′)nν (t′)

n−1 δν (t′)

δν (t)

=

∫
dt′w (t′)nν (t′)

n−1
δD (t− t′)

= nw (t) ν (t)
n−1

Integrating by parts (the Gaussian kills off the "surface" terms) gives∫
δν (·) ν (t) δD (x−X (t))PN(t) (ν (·))

= σ2

∫
δν (·)

(
δ

δν (t)
δD (x−X (t))

)
exp

[
− 1

2σ2

∫
dt′ν (t′)

2
]

= σ2

∫
δν (·)

(
δX (t)

δν (t)

δ

δX (t)
δD (x−X (t))

)
exp

[
− 1

2σ2

∫
dt′ν (t′)

2
]

= −σ2

∫
δν (·)

(
δX (t)

δν (t)

∂

∂x
δD (x−X (t))

)
exp

[
− 1

2σ2

∫
dt′ν (t′)

2
]

= −σ2 ∂

∂x

∫
δν (·)

(
δX (t)

δν (t)
δD (x−X (t))

)
exp

[
− 1

2σ2

∫
dt′ν (t′)

2
]

Now we have to evaluate δX (t) /δν (t) . Integrating both sides of the differential
equation for X (t) gives

X (t) =

∫ t

0

dt′V (X (t′)) +

∫ t

0

dt′ν (t′)
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Taking the functional derivative δ/δν (t) of both sides gives

δX (t)

δν (t)
=

∫ t

0

dt′
δV (X (t′))

δν (t)
+

∫ t

0

dt′
δν (t′)

δν (t)

t is the endpoint of the integration and we are varying ν at time t, hence, due
to causality, any change in X (t′) can occur only when t′ = t. But the delta
function factor δD (x−X (t)) is holding X (t′) fixed at the value x at t′ = t,
hence we have δD (x−X (t)) δV (X (t′)) /δν (t) = 0. The second term evaluates
to ∫ t

0

dt′δD (t′ − t) =
1

2

The 1/2 is because the delta function is centered at the endpoint t and so half
the area under the delta function is outside the range of integration. (Consider

representing the delta function as a Gaussian
√

2πσ2 exp
[
− (t′ − t)2

/2σ2
]
in

the limit σ → 0. Integrating the Gaussian from 0 to t yields 1/2 in the limit as
σ → 0.) Hence we have finally, putting all the pieces together

∂

∂t
PX(t) (x) = − ∂

∂x
V (x)PX(t) (x) +

σ2

2

∂2

∂x2
PX(t) (x)

which is the Fokker-Planck Equation.

22 Euler Sine Formula Simple Proof

The Euler Sine Formula is the identity

sin (x)

x
=

∞∏
n=1

(
1−

( x

nπ

)2
)

This relation may look strange but note that the right hand side is zero for all
x = nπ for n = any nonzero positive or negative integer, it is 1 at x = 0 and
is symmetric about x = 0 with only even powers of x occuring in the product
which certainly matches the behavior of sin (x) /x
There are no doubt multiple techniques for proving this. Here’s the simplest

one I know. I found I had written it in the margin of my copy of Feynman and
Hibbs "Quantum Mechanics and Path Integrals" in the section on using Fourier
series to solve path integrals. No doubt it is a standard proof which may even
be assigned as a problem in some texts, but I haven’t seen it anywhere.
Let

f (x) =

∞∏
n=1

(
1−

( x

nπ

)2
)

Develop a differential equation for f (x) by taking a derivative w.r.t. x on both
sides. It is straightforward to show

∂xf (x) = −2x

π2

( ∞∑
n=1

1

n2 −
(
x
π

)2
)
f (x)
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Rewrite this as

∂x ln (f (x)) = −2x

π2

∞∑
n=1

1

n2 −
(
x
π

)2
Then using the "well known" result for the series (which we prove below)

∞∑
n=1

1

n2 −
(
x
π

)2 =
1

2
(
x
π

)2 − π cot
(
π xπ
)

2 xπ

gives directly

∂x ln (f (x)) = −2x

π2

(
1

2
(
x
π

)2 − π cot
(
π xπ
)

2 xπ

)

= − 1

x
+ cot (x)

= −∂x ln (x) + ∂x (ln (sin (x)))

= ∂x ln

(
sin (x)

x

)
and so finally

f (x) =
sin (x)

x

From the original infinite product defintion, f (0) = 1 as a boundary conditions
and so we have that the integration constant is zero.
The above series can be evaluated using the technique of converting sums to

integrals. The details are presented in Bernard Friedmans superb book "Lec-
tures on Applications-Oriented Mathematics" in the chapter on complex inte-
gration. (page 153 in the 1969 edition).
Consider series of the form

S =

∞∑
n=1

1

n2 − a2

If we can find a function g (z) with poles at z = n (a positive integer) all with
residue 1 then

1

2πi

∫
C

dz
g (z)

z2 − a2
= S + pole contribution from z = ±a

where C is a suitably chosen closed contour in the z = x+ iy complex plane.
Of course sin (πz) has zeros at z = n with residue cos (πn) = (−1)

n
. Hence

we can take

g (z) =
cos (πz)

sin (πz)
= cot (πz)

Consider evaluating this on the closed square contour

z =

{
±
(
N + 1

2

)
+ iy vertical sides

±
(
N + 1

2

)
i+ x horizontal sides
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with N a positive integer. Rewriting g (z) in terms of exponentials gives

g (z) = i
eiπz + e−iπz

eiπz − e−iπz

= i
1 + e−i2πz

1− e−i2πz

On the left and right sides of the square contour we have

g

(
z = ±

(
N +

1

2

)
+ iy

)
= i

1 + e∓i2π(N+1/2+iy)

1− e∓i2π(N+1/2+iy)

= i
1− e±2πy

1 + e±2πy

and so

0 ≤
∣∣∣∣g(z = ±

(
N +

1

2

)
+ iy

)∣∣∣∣ ≤ 1

for all N and y.
On the top and bottom sides of the square contour

g

(
z = ±

(
N +

1

2

)
i+ x

)
= i

1 + e∓i2π((N+1/2)i+x)

1− e∓i2π((N+1/2)i+x)

= i
1 + e±2π((N+1/2)∓i2πx)

1− e±2π((N+1/2)∓i2πx)

which gives∣∣∣∣g(z = ±
(
N +

1

2

)
i+ x

)∣∣∣∣ =

∣∣∣∣1 + e±2π((N+1/2)∓2iπx)

1− e±2π((N+1/2)∓2iπx)

∣∣∣∣
=

(
1 + 2e±2π(N+1/2) cos (2πx) + e±4π(N+1/2)

1− 2e±2π(N+1/2) cos (2πx) + e±4π(N+1/2)

)1/2

For N →∞ we have ∣∣∣∣g(z = ±
(
N +

1

2

)
i+ x

)∣∣∣∣→ 1

for all x.
Hence the integral along the contour is, for N large, less than∫ +(N+1/2)

−(N+1/2)

dx

∣∣∣∣∣ 1((
N + 1

2

)
i+ x

)2 − a2

∣∣∣∣∣+

∫ +(N+1/2)

−(N+1/2)

dx

∣∣∣∣∣ 1(
−
(
N + 1

2

)
i+ x

)2 − a2

∣∣∣∣∣
+

∫ +(N+1/2)

−(N+1/2)

dy

∣∣∣∣∣ 1((
N + 1

2

)
+ iy

)2 − a2

∣∣∣∣∣+

∫ +(N+1/2)

−(N+1/2)

dy

∣∣∣∣∣ 1(
−
(
N + 1

2

)
+ iy

)2 − a2

∣∣∣∣∣
→ 0 as N →∞
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Hence the integral yields zero for N →∞.
Noting that we have both the z = n poles from g (z) and the z = ±a poles

from the 1/
(
z2 − a2

)
factor inside the contour for N + 1/2 > a, we get, for

N →∞,

0 =
1

2πi

∫
C

dz
g (z)

z2 − a2

= 2

∞∑
n=1

1

n2 − a2
− 1

a2
+
π

a
cot (πa)

And so we have

S =

∞∑
n=1

1

n2 − a2

=
1

2a2
− π

2a
cot (πa)

22.1 The Basel Problem

The Basel Problem was the name given to finding the closed form solution to
the sum

∑∞
n=1 1/n2 which is the Riemann Zeta function ζ (s) =

∑∞
n=1 1/ns for

s = 2. The problem was proposed by Pietro Mengoli in 1650 and solved by
Leonhard Euler in 1734. Eulers first proof was not rigorous. Euler did develop
a rigorous proof in 1741.
From above we have that

∞∑
n=1

1

n2
= lim

a→0

∞∑
n=1

1

n2 − a2

= lim
a→0

(
1

2a2
− π

2a
cot (πa)

)
=

1

2a2
− π

2a

(
1

πa
− πa

3
+ · · ·

)
=

π2

6

23 Feynman Denominator Formula

The Feynman Denominator Formula is

1

x1x2 · · ·xN
=

∫ 1

0

dt1dt2 · · · dtNδD

(
1−

N∑
n=1

tn

)
(N − 1)!∑N
n=1 xntn

Here we derive this result.
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It is straightforward to write

1

x1x2 · · ·xN
=

∫ ∞
0

ds1ds2 · · · dsN exp

[
−

N∑
n=1

xnsn

]
assuming all the xn have a positive real part. Since over their ranges of integra-
tion all the sn are nonnegative we have

∑N
n=1 sn ≥ 0 from which it follows that

for any combination of sn values in the range 0 to ∞,∫ ∞
0

dTδD

(
T −

N∑
n=1

sn

)
= 1

One could be concerned about the case where all the sn = 0 but this is nominally
a "set of measure zero" and so we will ignore it. Inserting this way of writing 1
into the integral above gives

1

x1x2 · · ·xN
=

∫ ∞
0

dTδD

(
T −

N∑
n=1

sn

)∫ ∞
0

ds1ds2 · · · dsN exp

[
−

N∑
n=1

xnsn

]
Let

sn = Ttn

and use

δD

(
T −

N∑
n=1

sn

)
= δD

(
T

(
1−

N∑
n=1

tn

))

=
1

T
δD

(
1−

N∑
n=1

tn

)
to get

1

x1x2 · · ·xN
=

∫ 1

0

dt1dt2 · · · dtNδD

(
1−

N∑
n=1

tn

)∫ ∞
0

dTTN−1 exp

[
−T

N∑
n=1

xntn

]

=

∫ 1

0

dt1dt2 · · · dtNδD

(
1−

N∑
n=1

tn

)
(N − 1)!(∑N
n=1 xntn

)N
where the upper limit of 1 on the dtn integrals follows from the fact that

δD

(
1−

∑N
n=1 tn

)
indicates the sum of all the tn values can at most be 1 oth-

erwise the integral vanishes.
Finally, to evaluate the T integral we have used the trick∫ ∞

0

dTT p exp [−αT ] = (−∂α)
p
∫ ∞

0

dT exp [−αT ]

= (−∂α)
p 1

α

=
p!

αp+1
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24 Density of States

24.1 Definition

The density of states is the number of quantum energy eigenstates of a given
system per unit energy interval.
For discrete states E0, E1, E2, · · · we have

ρ (E) =

∞∑
n=0

δD (E − En)

Note that δD always has units of 1/(units of its argument) and so δD (E − En)
has units of 1/energy as required. Also for any E that is not equal to any En
then ρ (E) = 0, there are no states at that energy and for ρ (E = En) =∞ since
there is one state at En but it is discrete and so it is spread over an energy
width of 0.
For continuous states E

(
~k
)
where ~k is continuous and represents, generi-

cally, momentum we have

ρ (E) =

∫
dDkδD

(
E − E

(
~k
))

It is useful to consider the case where E
(
~k
)
∼ ~kp and consider how ρ (E) scales

with the number of space dimensions D and the power of the momentum p.
Note that for the Schrodinger equation we have p = 2 whereas for the Dirac
equation we have p = 1.
NOTE: In both the discrete and continuous cases complete knowledge of

ρ (E) implies complete knowledge of the energy eigenvalues, En and E
(
~k
)
.

Writing the integral in polar coordinates in D dimensions where ΩD is the
D-dimensional angular part gives

ρ (E) =

∫
dDkδD

(
E − ~kp

)
= ΩD

∫ ∞
0

dkkD−1δD (E − kp)

Let k = E1/p + η

= ΩD

∫
dη
(
E1/p + η

)D−1

δD

(
E −

(
E1/p + η

)p)
= ΩD

∫
dη
(
E1/p + η

)D−1

δD

(
E −

(
E + pE(p−1/p)η + · · ·

))
= ΩD

∫
dη
(
E1/p + η

)D−1 1

pE(p−1)/p
δD (η)

=
ΩD
p
ED/p−1
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For the Schrodinger equation E ∼ k2 whereas for the Dirac Equation E ∼ k,
hence we have

ρSchrodinger (E) ∼ ED/2−1

= E−1/2 in 1D

= E0 = constant in 2D

= E1/2 in 3D

and

ρDirac (E) ∼ ED−1

= E0 = constant in 1D

= E1 in 2D

= E2 in 3D

Very different scaling of the density of states in different dimensions for Schrodinger(
E ∼ k2

)
and Dirac (E ∼ k) type equations.

24.2 Greens Function Local Density of States

The Greens function, actually the propagator (see section on difference between
the two) is given by

G (~r, ~r′, t) =
∑
n

un (~r)un (~r′)
∗
e−iEnt Discrete Case

=

∫
dDku

(
~k, ~r
)
u
(
~k, ~r′

)∗
e−iE(~k)t Continuous Case

where un (~r) and u
(
~k, ~r
)
are orthonormal eigenfunctions of some operator, e.g.,

a Hamiltonian Ĥ, i.e.

Ĥun (~r) = Enun (~r) Discrete Case

Ĥu
(
~k, ~r
)

= E
(
~k
)
u
(
~k, ~r
)
Continuous Case

Define local density of states ρ (~r,E) for the discrete case.

ρ (~r,E) =

∫ +∞

−∞

dt

2π
eiEtG (~r, ~r, t)

=

∫ +∞

−∞

dt

2π
eiEt

∑
n

un (~r)un (~r)
∗
e−iEnt

=
∑
n

un (~r)un (~r)
∗
∫ +∞

−∞

dt

2π
ei(E−En)t

=
∑
n

un (~r)un (~r)
∗
δD (E − En)
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then since ∫
dDrun (~r)un (~r)

∗
= 1

we have

ρ (E) =

∫
dDrρ (~r,E)

This requires a little more thought for the continuous case since∫
dDru

(
~k, ~r
)
u
(
~k,~r
)∗

= δD

(
~k − ~k

)
= δD (0) =∞.

25 Partition Function, Equipartition Theorem

25.1 Partition Function

If a system (think particles in a box) is in thermal equilibrium, then the proba-
bility P (E) of it having total energy E (think sum of all the particle energies,
kinetic and potential) is proportional to exp [−E/kBT ] where kB is Boltzmanns
constant and T is the temperature in Kelvin, i.e.,

P (E) ∼ exp

[
− E

kBT

]
exp [−E/kBT ] is often referred to as the Boltzmann "probability" or factor.
Why exp [−E/kBT ]? There is a lovely derivation, actually only a justifica-

tion, of this in a footnote in the first few pages of Feynmans book on statistical
mechanics. It goes more or less like this.
Assume the only relevant macroscopic quantity of the system on which the

probability can depend is its total energy E and that the total momentum,
angular momentum, charge (of any type) are all on average irrrelevant or all on
average zero. Here "on average" means the average over a time scale which is
long compared to the time scale of (thermal) fluctuations of the system. Since
energy is only defined up to an additive constant it follows that the ratio of
probabilities for the system to have two different energies E1 and E2 satisfies

P (E2)

P (E1)
=
P (E2 + Earb)

P (E1 + Earb)

where Earb here is an arbitrary value of energy. That is this relation must
hold for all values of Earb. The only function that satisfies this requirement is
P (E) ∼ abE , where a and b are constants. Without loss of generality (w.l.o.g.)
this may be rewritten as P (E) ∼ exp [−cE] where c is a constant. The minus
sign and the fact that c = 1/kBT all follow from physics, that is, comparing this
exponential form to the rules of thermodynamics. This is the argument used by
Maxwell to derive the Maxwell-Boltzmann distribution.
NOTE: If the system is perfectly isolated then, via energy conservation,

its total energy must be fixed at some value, say, E0 in which case P (E) =
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δD (E − E0) . This distribution is known as the "microcanonical ensemble". The
result P (E) ∼ exp [−E/kBT ] is known as the "canonical ensemble" and in this
case the system must be considered to be in contact with a nominally much
larger system known as the "heat bath" with which it can exchange energy but
not "particles". If the system can exchange both "particles" and energy with
the heat bath then P (E) is generalized to P (E,N) ∼ exp [− (E − µN) /kBT ]
where µ is the so called "chemical potential" and N is the total number of
particles in the system itself. This is known as the "grand canonical ensemble".
To be a true probability P (E) must be properly normalized.
If the possible values of E are discrete, i.e., E can take any of the values En

with n = 1, 2, · · · , then the normalization factor is

Z =
∑
n

e−En/kBT : canonical ensemble

Z =
∑
n,N

e−(En−µN)/kBT : grand canonical ensemble

The sum on N means: sum over all possible numbers of particles in the system
from 0 to ∞.
If E is continuous and depends on a combination of "degrees of freedom",Xn,

e.g., momenta, position, angular momenta, angular position, etc., as E (X1, X2, · · · )
then

Z =

∫
dX1dX2 · · · e−E(X1,X2,··· )/kBT : canonical ensemble

Z =
∑
N

∫
dX1dX2 · · · e−(E(X1,X2,··· )−µN)/kBT : grand canonical ensemble

where the number ofX ′s generally varies in a deterministic way with the number
of "particles" N.
In both cases Z is called the "partition function" but it is just the normal-

ization factor and so

P (En) ≡ Pn =
exp [−En/kBT ]

Z

The partition function contains all of thermodynamics since it acts as a
generating function, that is, derivatives of the partition function with respect to
various parameters yield different thermodynamic quantities. To see this define
the Helmholtz Free energy F as

F = −kBT ln (Z)

= −kBT ln

(∑
n

exp [−En/kBT ]

)
Entropy is defined as

S = −kB
∑
n

Pn ln (Pn)
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Taking the derivative of F with respect to the explicit T dependence of F yields

dF

dT
= −kB ln (Z)− kBT

1

Z

dZ

dT

but

dZ

dT
=

d

dT

∑
n

exp

[
− En
kBT

]
=

∑
n

(
En
kBT 2

exp

[
− En
kBT

])
=

Z

kBT 2

∑
n

EnPn

=
Z

kBT 2
U

where
〈E〉 =

∑
n

EnPn ≡ U

is, by definition, the average energy of the system.

dF

dT
= −kB ln (Z)− kBT

1

Z

Z

kBT 2

∑
n

EnPn

= −kB

(
ln (Z) +

∑
n

En
kBT

Pn

)

Multiplying the ln (Z) term by 1 in the form 1 =
∑
n Pn =

∑
n exp [−En/kBT ] /Z

gives

dF

dT
= −kB

∑
n

Pn

(
ln (Z) +

En
kBT

)
= −kB

∑
n

Pn

(
− ln

(
exp [−En/kBT ]

Z

))
= kB

∑
n

Pn ln (Pn)

= −S

and so we have

S = −dF
dT

where the derivative d/dT does not include any T dependence of the En. Such
dependence might come from varying the system volume with the temperature.
Varying En with T is excluded in the above result and (d/dT ) is then often
written using the notation(d/dT )V which means the volume is held constant
while varying T.

126



Note it also follows from the above that

S = kB ln (Z) + kBT
1

Z

dZ

dT

= −F
T

+
U

T
which gives

F = U − TS

The heat capacity is the change in average energy with temperature

CV =
dU

dT

where the subscript V on C indicates holding the volume constant or equiva-
lently taking derivatives only with respect to (w.r.t.) the explicit T dependence
and so

CV = −d
2F

dT 2

Energy is force times distance and so in general force is the change in energy
with some distance or length. Pressure p is force per area on the system and so
pressure is the negative of the change in energy of the system w.r.t. a change
in volume while holding the Pn fixed, i.e.,

p = −
∑
n

(
dEn
dV

)
Pn

= kBT
∑
n

(
− 1

kBT

dEn
dV

)
exp [−En/kBT ]∑
m exp [−Em/kBT ]

= kBT
∑
n

(
− 1

kBT

dEn
dV

)
exp [−En/kBT ]

Z

= −kBT
(
d ln (Z)

dV

)
T

=

(
dF

dV

)
T

where the subscript T means the temperature is held constant.

25.2 Equipartition Theorem

Consider the case where the energy depends continuously on some set of degrees
of freedom, X1, X2, · · · , i.e., En → E (X1, X2, · · · ) . For example the Xn might
be the phase space coordinates of N particles in 3 dimensions in which case
there are 6N different X variables,

X1, X2, · · · → pn,x, pn,y, pn,z, qn,x, qn,y, qn,z for n = 1, 2, · · · , N
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Here the pn,x, pn,y, pn,z are the x, y, z components of the "momentum" of particle
n and qn,x, qn,y, qn,z are its "position" coordinates.

In terms of the Xn with n = 1, 2, · · · , N we have

P (X1, X2, · · · ) =
exp [−E (X1, X2, · · · ) /kBT ]∫

dNX exp [−E (X1, X2, · · · ) /kBT ]

with

Z =

∫
dNX exp [−E (X1, X2, · · · ) /kBT ]

being the partition function.
Suppose E (X1, X2, · · · ) has the form

E (X1, X2, · · · ) = c1X
p1
1 + c2X

p2
2 + · · ·

that is E (X1, X2, · · · ) is a sum of the Xn raised to powers p1, p2, ... multiplied
by constants c1, c2, .... Then the expectation value of any one particular term
in the sum,

En = cnX
pn
n

for a given n is given by

〈En〉 = 〈cnXpn
n 〉

=
1

pn

〈
Xn

dE (X1, X2, · · · )
dXn

〉
=

1

pn

∫
dNXXn

dE (X1, X2, · · · )
dXn

P (X1, X2, · · · )

=
1

pn

∫
dNXXn

dE(X1,X2,··· )
dXn

exp [−E (X1, X2, · · · ) /kBT ]∫
dNX exp [−E (X1, X2, · · · ) /kBT ]

= − 1

pn
kBT

∫
dNXXn

(
d

dXn
exp [−E (X1, X2, · · · ) /kBT ]

)
∫
dNX exp [−E (X1, X2, · · · ) /kBT ]

Integrate by parts, assume surface terms vanish

=
1

pn
kBT

∫
dNX exp [−E (X1, X2, · · · ) /kBT ]∫
dNX exp [−E (X1, X2, · · · ) /kBT ]

=
1

pn
kBT

If pn = 2 then we have

〈En〉 =
1

2
kBT

Hence each degree of freedom which contributes quadratically in an additive
fashion to the total energy carries, on average, 1

2kBT of thermal energy. This
is the standard statement of the Equipartition Theorem. Note that the higher
the power dependence, i.e., the larger the value of pn, the less thermal energy
is stored, on average, in that degree of freedom. Interesting.

128



26 Shot and Thermal (Johnson) Noise

Shot noise corresponds to any process with discrete random events: raindrops
hitting a roof, photons being absorbed one at a time, electrons moving through
a circuit, the hissing sound of bacon frying, etc. Shot noise is almost always
associated with Poisson statistics. In fact, if the probability of receiving one
"count" of something in an infinitesimal time interval dt is given by pdt then
this leads directly to Poisson statistics as shown in a previous section.
Thermal (or Johnson) Noise on the other hand comes from fluctuations which

occur when a system is at a finite (nonzero) temperature.
For example consider a capacitor, unwired to anything, at a finite temper-

ature T (in Kelvin). The energy stored in a capacitor of capacitance C with
voltage VC between the plates is, as shown in a previous section, given by

E =
1

2
CV 2

C =
Q2

2C

where Q is the (instantaneous) charge on the capacitor. At thermal equilibrium
there is, via Boltzmann equipartition of energy, 1

2kBT of thermal energy in each
degree of freedom of a system where kB is Boltzmann’s constant. Assuming V
counts as 1 degree of freedom, setting E = 1

2kBT yields

CV 2
C = kBT → VC =

√
kBT

C

Note that V is the rms or root mean square voltage fluctuation across the
capacitor. The average of voltage across the capacitor, measured over a long
period of time is zero.
For a resistor, consider the resistor (with resistance R) being wired in a single

loop circuit in series with the capacitor (C) but not wired to anything else. In
this configuration the voltage across the resistor is instantaneously equal to the
voltage across the capacitor (neglecting speed of light effects) and so we have

VR = VC =

√
kBT

C

But the time constant of an resistor-capacitor or RC circuit is given by

τ = RC

and so, the rms voltage across the resistor is

VR =

√
kBRT

τ

or

V 2
R = kBRT

(
1

τ

)
The 1/τ factor can be thought of as a frequency interval ∆f in Hertz.
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The fact that kB , T, and R are all (nominally) frequency independent means
that up to some very high frequency where other physical effects come into play,
such as the speed of light, the mean square voltage is the same at all frequencies,
i.e., kBRT is frequency independent. But, an RC circuit is a low pass filter and
so this uniform frequency distribution of squared voltage must be filtered to
get the actual thermally induced mean voltage across the resistor if it were
unconnected to anything. This filtering leads to the "famous" factor of 4, i.e.
VR =

√
4kBRT as we now show.

To see this consider the thermally generated voltage fluctuations to be com-
ing from a voltage source or electromotive force (commonly referred to as an
e.m.f.) and treat the resistor as ideal, solve for the voltage across the capacitor,
which we know from above, in terms of this e.m.f, then solve for the (mean
square) e.m.f.
In an RC circuit, with RC in series, and with a voltage souce VS (ω) where

ω = 2πf is the radian frequency with f the frequency in Hertz, the current
I (ω) is given by

I (ω) =
VS (ω)

R+ 1
iωC

The voltage across the capacitor VC (ω) is

VC (ω) =
I (ω)

iωC
=

VS (ω)

1 + iωRC

which gives the mean (absolute) square voltage

|VC (ω)|2 =
|VS (ω)|2

1 + (ωRC)
2

NOTE: We have to use the absolute value squared since we are using i to account
for the 90 degree phase difference between the voltage across the capacitor and
the voltage across the resistor. This would not be necessary if the phase was
handled explicitly in terms of sines and cosines. Note also that the low pass
aspect is obvious from the ω2 = (2πf)

2 dependence in the denominator, as
the frequency f or equivalently the radian frequency ω increases the amount of
voltage transferred from the source to the capacitor decreases and so, more-or-
less, only the low frequency components of the source voltage are transferred to
the capacitor.
To get the total voltage across the capacitor we need to integrate over f

from 0 to ∞. This gives

V 2
C =

kBT

C
=

∫ ∞
0

df
|VS (ω)|2

1 + (ωRC)
2 =

1

2π

∫ ∞
0

dω
|VS (ω)|2

1 + (ωRC)
2

But we know from above that the thermally induced square voltage, |Vsource (ω)|2 ˜ kBRT
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is frequency independent, hence we have, using V 2
C = kBT/C

kBT

C
=
|VS |2

2π

∫ ∞
0

dω
1

1 + (ωRC)
2

=
|VS |2

2πRC

∫ ∞
0

d (ωRC)
1

1 + (ωRC)
2

=
|VS |2

2πRC

∫ ∞
0

dz
1

1 + z2

=
|VS |2

2πRC

1

2

∫ +∞

−∞
dz

1

1 + z2

=
|VS |2

2πRC

1

2

2πi

2i

=
|VS |2

4RC

or
|VS |2 = 4kBRT

The actual squared source voltage needs to be 4 times larger account for the
low pass filtering of the RC circuit. Hence the thermally induced mean square
voltage fluctuation across a resistor at temperature T is given by 4kBRT.

27 Euler-McLauren Formula

The Euler-McLauren formula is a relation between sums and integrals. It is
used to improve the accuracy of the numerical result when computing integrals
as sums. Define F (N) as the sum

F (N) ≡ f (0) + · · ·+ f (N) =

N∑
n=0

f (n)

Here f (x) is assumed to be smooth, well behaved, etc.
From the definition of F (N) we have

F (N + 1)− F (N) = f (N + 1)

But we have from Taylor series

f (x+ a) = f (x) + a∂xf (x) +
a2

2
∂2
xf (x) + · · ·

=

∞∑
n=0

(a∂x)
n

n!
f (x)

= exp [a∂x] f (x)
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hence

F (x+ 1) = exp [∂x]F (x)

f (x+ 1) = exp [∂x] f (x)

Substituting this above with a = 1 we get

0 = F (N + 1)− F (N)− f (N + 1)

= [(exp [∂x]− 1)F (x)− exp [∂x] f (x)]x=N

= F (N)−
[

exp [∂x]

exp [∂x]− 1
f (x)

]
x=N

Rearranging gives

F (N) =

[
exp [∂x]

exp [∂x]− 1
f (x)

]
x=N

=

[(
1 +

1

exp [∂x]− 1

)
f (x)

]
x=N

= f (N) +

[
1

exp [∂x]− 1
f (x)

]
x=N

Letting ∂−1
x indicate integration from 0 to x with an additive constant, c, we

can write

F (N) = f (N) +

[
∂x

exp [∂x]− 1
∂−1
x f (x)

]
x=N

= f (N) +

[
∂x

exp [∂x]− 1

(∫ x

0

dxf (x) + c

)]
x=N

Now noting that
t

exp [t]− 1
=

∞∑
n=0

bn
n!
tn

where bn are the Bernoulli numbers, we have

F (N) = f (N) +

∞∑
n=0

bn
n!

[
∂nx

(∫ x

0

dxf (x) + c

)]
x=N

= f (N) + b0

(∫ N

0

dxf (x) + c

)
+

∞∑
n=1

bn
n!

[
∂nx

(∫ x

0

dxf (x) + c

)]
x=N

= f (N) +

∫ N

0

dxf (x) + c+ b1f (N) +
b2
2

(∂xf) (N)

+
b3
3!

(
∂2
xf
)

(N) +
b4
4!

(
∂3
xf
)

(N) + · · ·
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Here we have used the fact that b0 = 1 and cmust be chosen so that F (0) = f (0)
which gives

c = −b1f (0)− b2
2

(∂xf) (0)− b3
3!

(
∂2
xf
)

(0)− b4
4!

(
∂3
xf
)

(0)− · · ·

Using the Benoulli number values b1 = −1/2, b2 = 1/6, b3 = 0, b4 = −1/30, b5 =
0, · · · gives

F (N) = f (N) +

∫ N

0

dxf (x)− 1

2
(f (N)− f (0)) +

1

12
((∂xf) (N)− (∂xf) (0))

− 1

30

1

4!

((
∂3
xf
)

(N)−
(
∂3
xf
)

(0)
)

+ · · ·

=
f (N) + f (0)

2
+

∫ N

0

dxf (x) +
1

12
((∂xf) (N)− (∂xf) (0))

− 1

30

1

4!

((
∂3
xf
)

(N)−
(
∂3
xf
)

(0)
)

+ · · ·

This result is the the Euler-Maclaurin formula or series. This is, with a small
difference, the derivation given on page 132 of Bernard Friedman’s wonderful
little book, "Lectures on Applications Oriented Mathematics", once Friedmans
different definition of the Bernoulli numbers is accounted for.
Rearranging gives∫ N

0

dxf (x) =

N∑
n=0

f (n)− f (N) + f (0)

2
− 1

12
((∂xf) (N)− (∂xf) (0)) + · · ·

This shows how to easily "correct" discrete sums to be closer to the true integral
value: The dominant correction amounts to simply subtracting the mean or
average of the starting and ending values of f (x) .

28 Embedding, Induced Metric, Curvature

28.1 Whitney Embedding Theorem

We begin by stating, but not proving the (weak) Whitney Embedding Theorem:

Any smooth Riemannian manifold of dimension d can be embedded,
i.e. mapped in a one-to-one smooth non-selfintersecting way, into a
Euclidean space of dimension 2d+ 1.

Examples: A one dimensional manifold, i.e., a path or trajectory, can be
embedded in 3D with no self intersections. If embedded in 2D it will generally
have self intersections. Think of projecting a knot in a piece of string onto a
sheet of paper. The surface of a sphere is a 2D manifold as is the surface of a
torus. Both can be embedded in 3D with no self intersections. The surface of
finite length cylinder with any (non-self-intersecting) cross sectional area can be
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embedded in 2D. Bending it in a circle and connecting the ends makes a torus.
But if the ends are connected "from the inside", similar to the "twist" that
makes a Mobius strip, then you get a Klein bottle and the Klein bottle cannot
be embedded in 3D without self intersections. It requires 4D. So, depending
on the manifold, sometimes fewer than 2d + 1 dimensions are required. The
(weak) Whitney Embedding theorem guarantees you can always make it work
in 2d + 1, it’s finding a map for any given Riemannian manifold which has no
self-intersections and preserves any given metric on the manifold that is the
hard part.

28.2 Induced Metric

Consider a 2D surface embedded in standard "x, y, z" 3D Euclidean space.
Given any small enough subarea of the surface it can be represented as

z = H (x, y)

Note that in general H (x, y) will be definable only over a finite area in the x, y
plane.
With this definition position on the surface in 3D is given by

~r (x, y) = (x, y,H (x, y))

Note that we are using x and y here to label position along or "in" the surface
in 2D. Also note that ~r (x, y) "lives in 3D" but depends only on x and y.
Infinitesimal displacements along or tangent to the surface in 3D are given

by

d~r = (dx, dy, ∂xHdx+ ∂yHdy)

≡
(
dx, dy,

(
d~ρ · ~∂⊥

)
H
)

= dρ
(
ρ̂x, ρ̂y,

(
ρ̂ · ~∂⊥

)
H
)

with d~ρ = (dx, dy) , ρ̂ = d~ρ/dρ ≡
(
ρ̂x, ρ̂y

)
, dρ =

√
dx2 + dy2,and ~∂⊥ = (∂x, ∂y) .

With these definitions we have ρ̂x = cos (φ) and ρ̂y = sin (φ) where φ is the angle
between ρ̂ and the x axis.Thus the tangent vector in the d~ρ direction is given
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by

t̂ (ρ̂) =
d~r

|d~r|

=

(
dx, dy,

(
d~ρ · ~∂⊥

)
H
)

∣∣∣(dx, dy,(d~ρ · ~∂⊥)H)∣∣∣
=

(
ρ̂x, ρ̂y,

(
ρ̂ · ~∂⊥

)
H
)

∣∣∣(ρ̂x, ρ̂y,(ρ̂ · ~∂⊥)H)∣∣∣
=

(
ρ̂x, ρ̂y,

(
ρ̂ · ~∂⊥

)
H
)

√
1 +

((
ρ̂ · ~∂⊥

)
H
)2

NOTE: Obviously t̂ depends on the choice of ρ̂ (as well as on x and y). The
ρ̂ dependence is indicated explicitly by writing t̂ (ρ̂) .

An infinitesimal distance ds along or "in" the surface in 3D is the square
root of

ds2 = d~r · d~r
=

(
dx, dy, d~ρ · ~∂⊥H

)
·
(
dx, dy, d~ρ · ~∂⊥H

)
= dx2 + dy2 + (dx∂xH + dy∂yH)

2

=
(

1 + (∂xH)
2
)
dx2 +

(
1 + (∂yH)

2
)
dy2 + 2 (∂xH) (∂yH) dxdy

If ξi with i = 1, · · · , N label the positions "in" a manifold of dimension N then
the standard form for ds2 in terms of the metric gi,j is

ds2 =

N∑
i,j=1

gi,jdξidξj

≡ gi,jdξidξj

where the second line follows from invoking (yet again) the Einstein summation
convention. Note that, in N dimensions, the gi,j are the i, j elements of an
N ×N matrix or tensor g.
Comparing the two forms of ds2 above gives, for our 2D surface, the induced

metric

g (x, y) =

[
1 + (∂xH)

2
(∂xH) (∂yH)

(∂xH) (∂yH) 1 + (∂yH)
2

]
We say induced because the metric above depends on how we embed the 2D
surface in 3D, i.e., on our choice of H (x, y). If the 2D manifold had a pre-
specified or given metric g0 (ξ1, ξ2) then as long we pick H (x, y) such that
(g0 (ξ1 = x, ξ2 = y)) = g (x, y) for all x and y, then the induced metric is the
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same as the given metric. Note that this type of relation between the induced
and given metric holds in any number of dimensions.
With the matrix g as written above and with "·" indicating matrix multi-

plication, we get

ds2 = (dx, dy) · g ·
(
dx
dy

)
= (dx, dy) ·

[
1 + (∂xH)

2
(∂xH) (∂yH)

(∂xH) (∂yH) 1 + (∂yH)
2

]
·
(
dx
dy

)
=

(
1 + (∂xH)

2
)
dx2 +

(
1 + (∂yH)

2
)
dy2 + 2 (∂xH) (∂yH) dxdy

as we should.
Because g is symmetric it can be diagonalized by changing the x, y coordinate

system. One choice is to define coordinates u and v by z = H (x, y) = u =
constant, in which case constant u curves in the x, y plane correspond to constant
z values on the surface H (x, y). Given this definition d~u at everypoint in the
x, y plane lies in the direction of the gradient of H (x, y) , i.e.,

d~u = du

(
~∂⊥H

)
∣∣∣(~∂⊥H)∣∣∣

= du
(∂xH, ∂yH)√

(∂xH)
2

+ (∂yH)
2

Then d~v can be taken to be everywhere perpendicular to d~u

d~v = dv
(−∂yH, ∂xH)√

(∂xH)
2

+ (∂yH)
2

so that we have
d~u · d~v = 0

with v corresponding to position along each constant u curve.
In the u, v coordinate system we have, from Pythagoras,

ds2 =

(
1 +

(
~∂⊥H

)2
)
du2 + dv2

and so

g (u, v) =

[
1 +

(
~∂⊥H

)2

0

0 1

]
Of course finding the explicit forms of x (u, v) and y (u, v) requires solving (si-
multaneously)

u = H (x (u, v) , y (u, v))

0 =
∂H (x (u, v) , y (u, v))

∂v
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28.3 Curvature (Extrinsic)

We begin by constructing the unit normal = unit vector everywhere perpendic-
ular to the surface.
Unit Normal: Consider the function

F (x, y, z) = z −H (x, y)

The 3D gradient of F points, in 3D, in the direction of the maximum rate of
change of F. This is easy to see. The change in F, dF, in the direction (in 3D)
d~r = (dx, dy, dz) is given by

dF = d~r · ~∂F

where ~∂ = (∂x, ∂y, ∂z) . But

d~r · ~∂F = dr
∣∣∣~∂F ∣∣∣ cos (θ)

where dr = |d~r| =
√
dx2 + dy2 + dz2,

∣∣∣~∂F ∣∣∣ =
√

(∂xF )
2

+ (∂yF )
2

+ (∂zF )
2 and

θ is the angle between d~r and ~∂F. Hence for a given dr, dF is maximum for
θ = 0, that is d~r parallel to ~∂F. Any direction perpendicular to ~∂F , i.e., θ = π/2
has, by definition dF = 0 and so is tangent to the surface z = H (x, y) . Thus
we have that the normal (= unit vector in 3D perpendicular to the surface at
every point) is given by

n̂ (x, y) =
~∂F∣∣∣~∂F ∣∣∣ =

(−∂xH,−∂yH, 1)√
1 +

(
~∂⊥H

)2

Note that n̂ (x, y) "lives in 3D"„i.e., it has x, y and z components, but depends
only on the 2D coordinates x and y.
Tangent Vectors: Since

n̂ (x, y) · n̂ (x, y) = 1 for all x, y

we have (
d~ρ · ~∂⊥

)
(n̂ (x, y) · n̂ (x, y)) = 0

or using
(
d~ρ · ~∂⊥

)
= dρ

(
ρ̂ · ~∂⊥

)
and dividing by dρ((

ρ̂ · ~∂⊥
)
n̂ (x, y)

)
· n̂ (x, y) = 0

which means either
((
ρ̂ · ~∂⊥

)
n̂ (x, y)

)
= 0 or

(
ρ̂ · ~∂⊥

)
n̂ (x, y) is tangent to the

surface in 3D. Hence, if it doesn’t vanish,
((
ρ̂ · ~∂⊥

)
n̂ (x, y)

)
will be parallel or

tangent to d~r for some value of ρ̂ = (dx/dρ, dy/dρ), i.e., it must be proportional
to t̂ (ρ̂) defined above for some value of ρ̂.
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Explicitly, taking the inner or "dot" product of n̂ (x, y) with d~r = (dx, dy, (∂xHdx+ ∂yHdy)) =
dρt̂ (ρ̂) and n̂ gives

d~r · n̂ = (dx, dy, (∂xHdx+ ∂yHdy)) · (−∂xH,−∂yH, 1)√
1 +

(
~∂⊥H

)2

=
−∂xHdx− ∂yHdy + ∂xHdx+ ∂yHdy√

1 +
(
~∂⊥H

)2

= 0

which shows explicity that n̂ is normal to the surface.
A similar result follows for t̂ (ρ̂) since it has unit length everywhwere, i.e.,

t̂ (ρ̂) · t̂ (ρ̂) = 1 for all x, y

and so ((
ρ̂′ · ~∂⊥

)
t̂ (ρ̂)

)
· t̂ (ρ̂) = 0

for any ρ̂′. Hence, if
(
d~ρ′ · ~∂⊥

)
t̂ (ρ̂) doesn’t vanish then it points normal or

perpendicular to the surface, i.e., parallel or antiparallel to n̂ (x, y) .

Let’s evaluate
(
ρ̂ · ~∂⊥

)
n̂ explicitly. To simplify notation define

Notation:

First Derivatives

Hx = ∂xH Hy = ∂yH

Second Derivatives

Hxx = ∂2
xH Hxy = ∂x∂yH Hyy = ∂2

yH

and use
~∂z = (0, 0, 1)

138



(
ρ̂ · ~∂⊥

)
n̂ =

(
ρ̂ · ~∂⊥

) ~∂ (z −H)√
1 +

(
~∂⊥H

)2

=

(
−ρ̂xHxx − ρ̂yHxy,−ρ̂xHxy − ρ̂yHyy, 0

)√
1 +H2

x +H2
y

+ (Hx, Hy,−1)

((
ρ̂x (HxHxx +HyHxy) + ρ̂y (HxHxy +HyHyy)

)(
1 +H2

x +H2
y

)3/2
)

=

(
−ρ̂xHxx − ρ̂yHxy,−ρ̂xHxy − ρ̂yHyy, 0

) (
1 +H2

x +H2
y

)
+ (Hx, Hy,−1)

(
ρ̂x (HxHxx +HyHxy) + ρ̂y (HyHxy +HyHyy)

)(
1 +H2

x +H2
y

)3/2

=

 ρ̂x
(
HxHyHxy −

(
1 +H2

y

)
Hxx

)
+ ρ̂y

(
HxHyHyy −

(
1 +H2

y

)
Hxy

)
,

ρ̂x
(
HxHyHxx −

(
1 +H2

x

)
Hxy

)
+ ρ̂y

(
HxHyHxy −

(
1 +H2

x

)
Hyy

)
,

−
(
ρ̂x (HxHxx +HyHxy) + ρ̂y (HyHxy +HyHyy)

)


(
1 +H2

x +H2
y

)3/2
Consider some special cases. First, note that the x, y componentf of

(
ρ̂ · ~∂⊥

)
n̂

does not, in general, point in the same direction as ρ̂. Second, note that if Hxx =

Hyy = Hxy = 0 at a given point then we get
(
ρ̂ · ~∂⊥

)
n̂ = (0, 0, 0) at that point.

This makes sense, in order to get a nonzero result for
(
ρ̂ · ~∂⊥

)
n̂ at any point

the surface must have some curvature, i.e. at least one nonvanishing second
derivative at that point. If the surface is locally "flat", Hxx = Hyy = Hxy = 0,
then n̂ doesn’t change for infinitesimal displacements from that point. Third,
note that if Hx = Hy = 0 at a given point then(

ρ̂ · ~∂⊥
)
n̂ = −

(
ρ̂xHxx + ρ̂yHxy, ρ̂xHxy + ρ̂yHyy, 0

)
which makes sense. The vanishing of the first derivatives means that, at that
point, the surface is perfectly horizontal and so any tangent vector at that point
will have only x and y components, no z component and, further, the curvature
will be proportional to the second derivatives.
Curvature is defined as the reciprocal or multiplicative inverse of the radius

of curvature. For a circle of radius R, the arc length swept out on the circle ds
for a change in angle dθ is

ds = Rdθ =

√
1 +

((
ρ̂ · ~∂⊥

)
H
)2

NOTE: This is extrinsic curvature as it depends on how the surface is
embedded in 3D. A curve embedded in 3D will have extrinsic curvature, e.g.,
the curvature of a circle, but it does not have intrinsic curvature which is defined
by the Riemann curvature tensor.
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Hence the curvature κ of a circle of radius R is given by

κ =
1

R
=
dθ

ds

Since n̂ (x, y), by definition, has unit length everywhere, the difference between
n̂ (x, y) and n̂ (x+ dx, y + dy) can only be a rotation. Note that n̂ can rotate in

any direction and so
(
d~ρ · ~∂⊥

)
n̂ does not necessarilly point on the d~ρ direction.

As discussed above, if it doesn’t vanish,

(n̂ (x+ dx, y + dy)− n̂ (x, y)) =
(
d~ρ · ~∂⊥

)
n̂

is tangent to the surface and therefore

dθ =
((
dρρ̂ · ~∂⊥

)
n̂
)
· t̂ (ρ̂)

= −n̂ ·
((
dρρ̂ · ~∂⊥

)
t̂ (ρ̂)

)
where the second line follows from n̂ · t̂ (ρ̂) = 0 for all x and y. Note that dθ
depends on the direction ρ̂.
The curvature κ (ρ̂) of the 1D path or trajectory of the intersection ofH (x, y)

with the plane containing ρ̂ and n̂ is thus given by

κ (ρ̂) =
dθ

ds

=

((
ρ̂ · ~∂⊥

)
n̂
)
· t̂ (ρ̂)√

1 +
((
ρ̂ · ~∂⊥

)
H
)2

= −
n̂ ·
((
ρ̂ · ~∂⊥

)
t̂ (ρ̂)

)
√

1 +
((
ρ̂ · ~∂⊥

)
H
)2

The last two lines follow from
(
ρ̂ · ~∂⊥

) (
n̂ · t̂

)
= 0 and it is a matter of choice

which one to use.
Note: There is a sign convention associated with the curvature which is (I

believe) opposite to the one used above.
Begin comment
We can write this another way using n̂ =

((
ρ̂ · ~∂⊥

)
t̂ (ρ̂)

)
/
∣∣∣(ρ̂ · ~∂⊥) t̂ (ρ̂)

∣∣∣.
Note that n̂ expressed this way is independent of ρ̂, hence, assuming,

∣∣∣(ρ̂ · ~∂⊥) t̂∣∣∣ 6=
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0, we have

κ
(
ρ̂, ρ̂′

)
≡ −

((
ρ̂′ · ~∂⊥

)
t̂
(
ρ̂′
))
·
((
ρ̂ · ~∂⊥

)
t̂ (ρ̂)

)
∣∣∣(ρ̂′ · ~∂⊥) t̂ (ρ̂′)∣∣∣√1 +

((
ρ̂ · ~∂⊥

)
H
)2

= −

((
ρ̂′ · ~∂⊥

)
t̂
(
ρ̂′
))
·
((
ρ̂ · ~∂⊥

)
t̂ (ρ̂)

)
√((

ρ̂′ · ~∂⊥
)
t̂
(
ρ̂′
))
·
((
ρ̂′ · ~∂⊥

)
t̂
(
ρ̂′
))√

1 +
((
ρ̂ · ~∂⊥

)
H
)2

for any ρ̂ and ρ̂′. This expresses the curvature entirely in terms of t̂.
For ρ̂ = ρ̂′ this reduces to

κ (ρ̂) =

√((
ρ̂′ · ~∂⊥

)
t̂
(
ρ̂′
))
·
((
ρ̂ · ~∂⊥

)
t̂ (ρ̂)

)
√

1 +
((
ρ̂ · ~∂⊥

)
H
)2

The same game can be played using t̂ (ρ̂) =
((
ρ̂ · ~∂⊥

)
n̂
)
/
∣∣∣(ρ̂ · ~∂⊥) n̂∣∣∣, again

assuming
∣∣∣(ρ̂ · ~∂⊥) n̂∣∣∣ 6= 0. In this way κ (ρ̂) can be expressed entirely in terms

of n̂.
End comment
Evaluating the

((
ρ̂ · ~∂⊥

)
n̂
)
· t̂ form for κ (ρ̂) above gives, with "·" meaning

matrix multplication,

κ (ρ̂) =

(
ρ̂x, ρ̂y

)
·
(

∂2
xH ∂x∂yH

∂x∂yH ∂2
yH

)
·
(
ρ̂x
ρ̂y

)
√

1 +
(
~∂⊥H

)2
(

1 +
((
ρ̂ · ~∂⊥

)
H
)2
)

Examples:
1.

H = H (x)

κ (ρ̂) =
ρ̂2
x∂

2
x√

1 + (∂xH)
2
(

1 + ρ̂2
x (∂xH)

2
)

2.
H = xy

κ (ρ̂) =
2ρ̂xρ̂y(

1 +
(
ρ̂xy + ρ̂yx

)2)√
1 + x2 + y2

3.

H =
x2

2Rx
+

y2

2Ry
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κ (ρ̂) =
ρ̂2
x/Rx + ρ̂2

y/Ry(
1 +

(
ρ̂xx/Rx + ρ̂yy/Ry

)2)√
1 + (x/Rx)

2
+ (y/Ry)

2

4.
H = −

√
R− x2 − y2

κ (ρ̂) =
1

R

29 Riemann Curvature

This section has all the math but not much explanation. Need to work on it.
NOTE: Riemann curvature is "intrinsic curvature", it is not the same thing

as the extrinsic curvature κ̂ discussed above. For example, a circle is the em-
bedding of a 1D space into the 2D plane. The circle has a constant extrinsic
curvature given by 1/(circle radius). If the circle is distorted then the extrinsic
curvature becomes position dependent. But for all (nonpathological) embed-
dings its Riemann curvature is 0. More generally think of a 1D space embedded
in 3D, i.e., a curve in 3D. Let the coordinate along the curve be the length `
along the curve from some given starting point. Then ds2 = d`2 and the metric,
which is a 1×1 matrix in this case is g = 1. All its derivatives vanish and so the
Riemann curvature (derived below) which depends on the second derivatives of
g is explicitly zero no matter how twisted or contorted the 1D curve is in 3D.

N dimensional space: Cartesian = RN

~x = xiûi

Summation convention

ûi · ûj = δi,j

ûi = Cartesian

~x
(
~ξ
)

= xi

(
~ξ
)
ûi

Notation : Drop arrow on ξ in function arguments: ~x
(
~ξ
)
−→ ~x (ξ) , etc.

Same for functions of ~x, drop arrow

~ξ = N dimensional curvilinear coords in RN

=
(
ξ1, ξ2, · · · , ξN

)
Use notation ξGreek and xLatin

Why distinguish upper lower indices on

ξµ = manifold (RN ) coordinates

dξµ and ∂/∂ξµ transform oppositely
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dηµ = (∂ηµ/∂ξν) dξν

∂/∂ηµ = (∂ξν/∂ηµ) ∂/∂ξν

dηµ∂/∂ηµ = (∂ηµ/∂ξν) dξν (∂ξα/∂ηµ) ∂/∂ξα

= (∂ξα/∂ηµ) (∂ηµ/∂ξν) dξν∂/∂ξα

= δαν dξ
ν∂/∂ξα

= dξµ∂/∂ξµ

Invariant (formwise)

Notation

∂Latin =
∂

∂xLatin

∂Greek =
∂

∂ξGreek

Need to remember xi and ξ
µ appear as both

functions and variables, i.e.,

∂iξ
µ =

∂ξµ (x)

∂xi
Here xi is a variable, ξ

µ is a function

∂µxi =
∂xi (ξ)

∂ξµ
Here ξµ is a variable, xi is a function

d~r = dξµ∂µ~r

= dξµ~eµ

~eµ = local basis vector along ξµ coords in RN

Derive the metric gµν

ds2 = d~r · d~r
= dξµ~eµ · dξν~eν
= (~eµ · ~eν) dξµdξν

≡ gµνdξ
µdξν

gµν = ~eµ · ~eν
= (∂µxi) (∂νxj) ûi · ûj
= (∂µxi) (∂νxj) δij

= (∂µxi) (∂νxi)

gµν = gνµ
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Metric Inverse

gµα (∂jξ
α) (∂jξ

ν) = (∂µxi) (∂αxi) (∂jξ
α) (∂jξ

ν)

= (∂µxi) (∂jξ
α) (∂αxi) (∂jξ

ν)

= (∂µxi) (∂jxi) (∂jξ
ν)

= (∂µxi) δij (∂jξ
ν)

= (∂µxi) (∂iξ
ν)

= ∂µξ
ν

= δνµ

gµν = (∂jξ
µ) (∂jξ

ν) =
(
g−1

)
µν

Vector field

~v (ξ) = vµ (ξ)~eµ (ξ)

Covariant Derivatives

∂ν~v (ξ) = (∂νv
µ (ξ))~eµ (ξ) + vµ (ξ) (∂ν~eµ (ξ))

∂ν~eµ (ξ) is a vector so it can be expanded in terms of ~eγ
This only works if ξµ and xi are the same dimension.

i.e., the ξµ are curvilinear coordinates in xi space.

∂ν~eµ (ξ) = Γγνµ (ξ)~eγ (ξ)

∂ν~eµ = ∂ν∂µxiûi

= ∂ν∂µxiδij ûj

= (∂ν∂µxi)

(
∂xj
∂xi

)
ûj

= (∂ν∂µxi)

(
∂ξγ

∂xi

∂xj
∂ξγ

)
ûj

= (∂ν∂µxi) (∂iξ
γ) ((∂γxj) ûj)

= (∂ν∂µxi) (∂iξ
γ)~eγ

Γγνµ = (∂ν∂µxi) (∂iξ
γ)

=

(
∂2xi (ξ)

∂ξν∂ξµ

)(
∂ξγ (x)

∂xi

)
Γγνµ = Γγµν

∂ν~v = (∂νv
µ)~eµ + vµΓγνµ~eγ

= (∂νv
µ) δγµ~eγ + vµΓγνµ~eγ

= (∂νv
µ) δγµ~eγ + vµΓγνµ~eγ

=
((
δγµ∂ν + Γγνµ

)
vµ
)
~eγ

=
((
δγµ∂ν + Γγµν

)
vµ
)
~eγ
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Dγ
µν =

(
δγµ∂ν + Γγµν

)
Trajectory: ξµ (t)

t = monotonically increasing parameter along trajectory

t = 0→ 1

Trajectory minimizes distance

In RN straight line is shortest distance between two points

hence xi (ξ (t)) = (xi (ξ (1))− xi (ξ (0))) t+ xi (ξ (0))

∂txi (ξ (t)) = (∂tξ
µ) (∂µxi) = (xi (ξ (1))− xi (ξ (0))) = constant

∂2
t xi (ξ (t)) =

(
∂2
t ξ
µ
)

(∂µxi) + (∂tξ
µ) (∂tξ

ν) (∂µ∂νxi) = 0

multiply by ∂iξ
γ

0 = (∂iξ
γ)
(
∂2
t ξ
µ
)

(∂µxi) + (∂iξ
γ) (∂tξ

µ) (∂tξ
ν) (∂µ∂νxi)

=
(
∂2
t ξ
µ
)

(∂iξ
γ) (∂µxi) + (∂tξ

µ) (∂tξ
ν) (∂µ∂νxi) (∂iξ

γ)

=
(
∂2
t ξ
µ
)
δγµ + (∂tξ

µ) (∂tξ
ν) Γγµν

=
(
∂2
t ξ
γ
)

+ Γγµν (∂tξ
µ) (∂tξ

ν)

= geodesic equation

Derivative of metric

∂γgµν = ∂γ ((∂µxi) (∂νxi))

= (∂γ∂µxi) (∂νxi) + (∂µxi) (∂γ∂νxi)

= (∂γ∂µxi) δij (∂νxj) + (∂µxi) δij (∂γ∂νxj)

= (∂γ∂µxi) (∂iξ
α) (∂αxj) (∂νxj) + (∂µxi) (∂jξ

α) (∂αxi) (∂γ∂νxj)

= Γαµγ (∂αxj) (∂νxj) + Γανγ (∂αxi) (∂µxi)

= Γαµγgαν + Γανγgαµ

= Linear combination of the metric

"Metric Preserving"

∂γgµν − Γαµγgαν − Γανγgαµ = 0

Γγµν in terms of gµν

∂γgµν = Γαµγgαν + Γανγgαµ

∂µgγν = Γαµγgαν + Γανµgαγ

∂νgµγ = Γαµνgαγ + Γανγgαµ
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∂µgγν + ∂νgµγ − ∂γgµν = Γαµγgαν + Γανµgαγ

+Γαµνgαγ + Γανγgαµ

−Γαµγgαν − Γανγgαµ

= 2Γαµνgαγ

Γαµν =
1

2

(
g−1

)
αγ

(∂µgγν + ∂νgµγ − ∂γgµν)

=
1

2
gαγ (∂µgγν + ∂νgµγ − ∂γgµν)

∂t~v (ξ (t)) = (∂tξ
µ) (∂µ~v)

= (∂tξ
µ)
(
Dγ
µνv

ν
)
~eγ

∂t~v (ξ (t)) = 0

=⇒
(
Dγ
µνv

ν
)

= 0

Parallel Transport

Curvature

∂β~eµ = Γνβµ~eν

∂α (∂β~eµ) =
(
∂αΓνβµ

)
~eν + Γνβµ (∂α~eν)

=
(
∂αΓνβµ

)
~eν + ΓνβµΓσαν~eσ

second term: swap ν ←→ σ

=
(
∂αΓνβµ

)
~eν + ΓσβµΓνασ~eν

swap: α←→ β

∂β (∂α~eµ) =
(
∂βΓναµ

)
~eν + ΓναµΓσβν~eσ

subtract

∂α (∂β~eµ)− ∂β (∂α~eµ) =
(
∂αΓνβµ − ∂βΓναµ + ΓσβµΓνασ − ΓσαµΓνβσ

)
~eν

Riemann Curvature Tensor Definition

Rναβµ = ∂αΓνβµ − ∂βΓναµ + ΓσβµΓνασ − ΓσαµΓνβσ

NOTE By definition this is the matrix coeffi cient of ~eν
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But ∂α (∂β~eµ)− ∂β (∂a~eµ) should be zero since

0 = ∂α∂β − ∂β∂α
Check this explicitly

Be careful to distinguish ξµ as a coordinate variable

from ξµ as a function of xi
e.g., (∂iξ

µ) is a function of x so ∂ν (∂iξ
µ) is zero

∂αΓνβµ − ∂βΓναµ + ΓσβµΓνασ − ΓσαµΓνβσ

= ∂α (∂β∂µxi) (∂iξ
ν)− ∂β (∂α∂µxi) (∂iξ

ν)

+ (∂β∂µxi) (∂iξ
σ) (∂α∂σxj) (∂jξ

ν)

− (∂a∂µxi) (∂iξ
σ) (∂β∂σxj) (∂jξ

ν)

= ((∂α∂β∂µxi)− (∂β∂α∂µxi)) (∂iξ
ν)

+ (∂β∂µxi) (∂α ((∂iξ
σ) ∂σxj)) (∂jξ

ν)

− (∂a∂µxi) (∂β ((∂iξ
σ) ∂σxj)) (∂jξ

ν)

= (∂β∂µxi) (∂αδij) (∂jξ
ν)

− (∂a∂µxi) (∂βδij) (∂jξ
ν)

= 0

Important point to note about all of the above: Γµαβ and hence R
µ
αβν can be

written entirely in terms of gµν . The fact that everything can be written in terms
of gµν is, effectively, the Gauss "Theorema Egregium", which literally translates
as remarkable or outstandingly good theorem. Of course, today, the meaning
of egregious is exactly the opposite.
Now, given the above, the question is

How can Rναβµ 6= 0 ?

Consider a sub-manifold M , e.g., a "surface", of dimension D embedded in
Euclidean space, RN , of dimension N > D. "Embedded" means, basically,
that M as a submanifold of RN has no self intersections. We will assume the
embedding is smooth, i.e., all the functions xi

(
~ξ
)
have derivatives at least up

to second order.
NOTE: The Whitney Embedding theorem guarantees that a manifold of

dimension D can always be embedded in Euclidean space of dimension 2D+ 1.
Now

~x = (x1, x2, · · · , xN )

~ξ = (ξ1, ξ2, · · · , ξD)

The fact that D < N changes things. Let ~x (ξ) map points in M as a func-
tion of the ξµ coordinates or parameters into RN . Consider an infinitesimal
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displacement vector in RN , d~x, that is tangent to M at some point, i.e.,

d~x = dξµ∂µ~x (ξ) = dξµ∂µxi (ξ) ûi

where again the ûi are the Cartesian unit vectors of RN . The length squared of
d~x is

ds2 = d~x · d~x
= dξµ∂µxi (ξ) ûidξ

ν∂νxj (ξ) ûj

= ~eµ (ξ) · ~eµ (ξ) dξµdξν

≡ gµν (ξ) dξµdξν

where
~eµ (ξ) = ∂µxi (ξ) ûi

are vectors tangent to M. So we still have a metric as a function of the ξµ.
But now

∂ν~eµ 6= Γσν,µ~eσ

since ∂ν~eµ (ξ) will not, in general, be tangent to M.
But Γσν,µ is a function of the metric gµ,ν (ξ) , and its derivatives, so the

Riemann curvature tensor is a function of the metric and its derivatives and we
can simply calculate it for a given metric. Theorema Egregium.

30 Density Matrix

Usually in quantum mechanics problems one is computing results for a specific
wave function or a specific combination of wave functions. But what if the
combination itself had a probability distribution. A simple example would be
that a colleague is supposed to prepare a specific wave function for you to do
measurements on but this colleague is a bit of a practical joker and so at ran-
dom sends you different wave functions to measure. Or, more realistically, the
system you are dealing with is interacting with another system which randomly
changes the wave function of the system you are measuring. In either case,
when analyzing your results you must account for this extra randomness, which
is "on top" of the inherent quantum randomness of the system. From the point
of view of superposition, this can be thought of as the numerical coeffi cients
in the superposition having their own probability distribution instead of being
fixed. You can also think of it as the different possible wave functions with each
having their own probability of occurring.
Let |ψi〉 be a complete set of quantum basis states. The corresponding wave

functions are given by ψi (x) = 〈x|ψi〉 where |x〉 are position eigenstates. By
definition an arbitrary state is given by a superposition

|ψ〉 =
∑
i

ci |ψi〉
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where the ci are complex valued numbers. Assume the |ψi〉 are orthonormal,〈
ψi|ψj

〉
= δij where δij is the Kronecker delta, i.e., the elements of the identity

matrix with i and j labeling rows and columns, respectively.
We always want the wave function to be normalized

〈ψ|ψ〉 =
∑
i,j

c∗i cj
〈
ψi|ψj

〉
=

∑
i

|ci|2

= 1

The corresponding wave function is given by

〈x|ψ〉 =
∑
i

ciψi (x)

A so called pure state has a given set of the ci.
Stating the obvious, quantum mechanics itself is probabalistic. If the ci

themselves are also probabalistic then the state is said to be "not pure". Let
P [c] be the joint probability distribution for the ci. For the pure state〈

ψ|Â|ψ
〉

=
∑
i,j

c∗i cj

〈
ψi|Â|ψj

〉
≡
∑
i,j

c∗i cjAi,j

is the expectation value of the operator Â for the state |ψ〉 . For the non-pure
state we have to average over the probabiity distribution P [c] as well. Indicate
this average by the notation 〈· · · 〉P .
Note that for all possible values of ci we want to have the state normalized,

i.e., 〈ψ|ψ〉 =
∑
i |ci|

2
= 1

Using P [c] we have〈〈
ψ|Â|ψ

〉〉
P

=

∫
dNcP [c]

〈
ψ|Â|ψ

〉
=

∑
i,j

∫
dNcP [c] c∗i cjAi,j

≡
∑
i,j

ρj,iAi,j

= tr [ρ ·A]

where "·" indicates matrix multiplication with the matrix ρj,i defined by∫
dNcP [c] c∗i cj
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We can also write ρ as an operator ρ̂

〈|ψ〉 〈ψ|〉P =

∑
i,j

∫
dNcP [c] cic

∗
j

 |ψi〉 〈ψj∣∣
=

∑
i,j

ρi,j |ψi〉
〈
ψj
∣∣

= ρ̂

Note that

tr [ρ̂] =
∑
k

∑
i,j

ρi,j 〈ψk|ψi〉
〈
ψj |ψk

〉
=

∑
k

ρk,k

=

∫
dNcP [c]

∑
k

|ck|2

=

∫
dNcP [c]

= 1

31 Solid Angles

31.1 Solid Angle in N dimensions.

Consider the Gaussian integral in N dimensions with x = (x1, x2, · · · , xN ) . In
the Cartesian xn coordinates the integrals factorize and we have

∫ +∞

−∞
dNx exp

[
−

N∑
n=1

x2
n

]
=

(∫ +∞

−∞
dxe−x

2

)N
= πN/2

after using the standard result∫ +∞

−∞
dxe−x

2

=
√
π

Rewrite the integral in polar coordinates with r2 =
∑N
n=1 x

2
n∫ +∞

−∞
dNx exp

[
−

N∑
n=1

x2
n

]
=

∫ ∞
0

drrN−1e−r
2

∫
dΩN−1

= ΩN−1

∫ ∞
0

drrN−1e−r
2
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where ΩN−1 is the surface area of the N−1 dimensional surface of a unit radius
sphere in N dimensions, i.e., it is the solid angle in N dimensions.
Letting r2 = t in the dr integral we have∫ ∞

0

drrN−1e−r
2

=
1

2

∫ ∞
0

dt√
t

(√
t
)N−1

e−t

=
1

2

∫ ∞
0

dttN/2−1e−t

=
1

2
Γ (N/2)

where Γ (· · · ) is the Euler Gamma function. For positive integer values of
z, Γ (z) = (z − 1)!.
Hence we have

ΩN−1
1

2
Γ (N/2) = πN/2

or

ΩN−1 =
2πN/2

Γ (N/2)

Now consider another way of approaching the same problem. Use a Dirac delta

function to constrain
√∑N

n=1 x
2
n to have unit length, i.e., to live on the N − 1

dimensional surface of a unit sphere in N dimensions

ΩN−1 =

∫
dNxδD

1−

√√√√ N∑
n=1

x2
n


Use the identity

δD

1−

√√√√ N∑
n=1

x2
n

 = 2δD

(
1−

N∑
n=1

x2
n

)

and substitute the Fourier representation of the delta function and assume we
can exchange orders of integration

ΩN−1 = 2

∫
dNx

∫ +∞

−∞

dω

2π
exp

[
iω

(
1−

N∑
n=1

x2
n

)]

= 2

∫ +∞

−∞

dω

2π
eiω
(∫ +∞

−∞
dxe−iωx

2

)N
= 2

∫ +∞

−∞

dω

2π

( π
iω

)N/2
eiω

= πN/2−1

∫ +∞

−∞
dω

(
1

iω

)N/2
eiω
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For N = 2Q = Even we have∫
dNxδD

1−

√√√√ N∑
n=1

x2
n

 = πQ−1

∫ +∞

−∞
dω

(
1

iω

)Q
eiω

but (
1

iω

)Q
= (−1)

Q−1 1

(Q− 1)!

(
∂Q−1
z

1

z + iω

)
z=0∫ +∞

−∞
dω

(
1

iω

)Q
eiω = (−1)

Q−1 1

(Q− 1)!

(
∂Q−1
z

∫ +∞

−∞
dω

1

z + iω
eiω
)
z=0

= (−1)
Q−1 1

(Q− 1)!

(
1

i
∂Q−1
z

∫ +∞

−∞
dω

1

ω − iz e
iω

)
z=0

Close contour upper half complex plane, Re [z] positive

= (−1)
Q−1 1

(Q− 1)!

(
1

i
∂Q−1
z 2πie−z

)
z=0

= 2π
1

(Q− 1)!

and so for N = 2Q = Even

ΩN−1 =
πN/2−12π

(N/2− 1)!

=
2πN/2

Γ (N/2)

Replacing (N/2− 1)! with Γ (N/2) analytically continues the result to N = odd.
NOTE: This is the same result as obtained using the Gaussian integral ap-

proach.

31.2 Circular cone solid angle

To get the solid angle of a circular cone restrict the range of the xN integral to
be from cos (θ0) to 1, where θ0 is the angle between ~r = (x1, x2, · · · , xN ) and
the xN axis. Indicating the circular cone solid angle by ΩN−1 (θ0) we have

ΩN−1 (θ0) =

∫ +∞

−∞
dN−1x

∫ 1

cos(θ0)

dxNδD

(
1−
√
~r2
)

= 2

∫ +∞

−∞
dN−1x

∫ 1

cos(θ0)

dxNδD
(
1− ~r2

)
= 2

∫ +∞

−∞

dω

2π
eiω
(∫ +∞

−∞
dxe−iωx

2

)N−1 ∫ 1

cos(θ0)

dxNe
−iωx2N

= 2

∫ +∞

−∞

dω

2π
eiω
( π
iω

)(N−1)/2
∫ 1

cos(θ0)

dxNe
−iωx2N
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Consider the case N = odd and let (N − 1) /2 = Q and we have

ΩN−1 (θ0) = πQ−1

∫ 1

cos(θ0)

dxN

∫ +∞

−∞
dω

(
1

iω

)Q
eiω(1−x2N)

= πQ−1 (−1)
Q−1 1

(Q− 1)!

∫ 1

cos(θ0)

dxN

(
∂Q−1
z

∫ +∞

−∞
dω

1

z + iω
eiω(1−x2N)

)
z=0

= πQ−1 (−1)
Q−1 1

(Q− 1)!

∫ 1

cos(θ0)

dxN

(
1

i
∂Q−1
z

∫ +∞

−∞
dω

1

ω − iz e
iω(1−x2N)

)
z=0

= πQ−1 (−1)
Q−1 1

(Q− 1)!

∫ 1

cos(θ0)

dxN

(
1

i
∂Q−1
z

∫ +∞

−∞
dω

1

ω − iz e
iω(1−x2N)

)
z=0

= πQ−1 (−1)
Q−1 1

(Q− 1)!

∫ 1

cos(θ0)

dxN

(
1

i
∂Q−1
z 2πie−z(1−x2N)

)
z=0

= 2πQ
1

(Q− 1)!

∫ 1

cos(θ0)

dxN
(
1− x2

N

)Q−1

Dropping the subscript N from xN∫ 1

cos(θ0)

dx
(
1− x2

)Q−1
=

Q−1∑
q=0

(Q− 1)!

q! (Q− 1− q)!

∫ 1

cos(θ0)

dxx2q

=

Q−1∑
q=0

(Q− 1)!

q! (Q− 1− q)! (−1)
q 1− cos (θ0)

2q+1

2q + 1

Note that∫ x

0

dx
(
1− x2

)Q−1
= x×Hypergeometric2F1[

1

2
, 1−Q, 3

2
, x]

using the notation from Mathematica, but we will stick with the finite series
representation.
Example: N = 3, Q = 1∫ 1

cos(θ0)

dx
(
1− x2

)0
=

∫ 1

cos(θ0)

dx

= 1− cos (θ0)

which is correct.
Putting it all together and using (Q− 1)! = Γ (Q) = Γ ((N − 1) /2) and

remembering we must have N = odd we get

ΩN−1 (θ0) = 2π(N−1)/2 1

Γ ((N − 1) /2)

N−1
2 −1∑
q=0

(
N−1

2 − 1
)
!

q!
(
N−1

2 − 1− q
)
!

(−1)
q 1− cos (θ0)

2q+1

2q + 1
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For a single cone in N = odd dimesions with a (half) opening angle of θ0, it’s
surface area covers the following fraction of the full surface area of the sphere

2π(N−1)/2 1
Γ((N−1)/2)

∑N−1
2 −1

q=0
(N−12 −1)!

q!(N−12 −1−q)!
(−1)

q 1−cos(θ0)2q+1

2q+1

2πN/2

Γ(N/2)

=
1√
π

Γ (N/2)

Γ ((N − 1) /2)

N−1
2 −1∑
q=0

(
N−1

2 − 1
)
!

q!
(
N−1

2 − 1− q
)
!

(−1)
q 1− cos (θ0)

2q+1

2q + 1

32 Acoustic Pulses

Acoustic Wave Equation (compressible gas)(
~∂2 − 1

c2
∂2
t

)
φ (~r, t) = 0

Here φ is the velocity potential, i.e., ~∂φ (~r, t) = ~v (~r, t) where ~v (~r, t) is the
velocity of the gas atoms/molecules at position ~r and time t. c is the speed of
sound.
Consider the 1+1 dimesional problem where an infinite rigid but movable

"wall" is placed parallel to the yz plane with it’s position along the x axis given
by X (t). Let the gas fill the semi-infiinite half space to the right of the wall, i.e.,
x > X (t) .When the wall speed ∂tX (t) is much less than the speed of sound the
atoms/molecules just to the right of the wall must move with the speed of the
wall, i.e. v (X (t) , t) = ∂tX (t). This is only one boundary condition, nominally
we need two since the wave equation is second order. But since the wave equation
in this case can be factorized as (∂x − ∂t/c) (∂x + ∂t/c)φ = 0, we can solve either
(∂x − ∂t/c)φ = 0 or (∂x + ∂t/c)φ = 0 to get waves/pulses moving in the −x
or the +x direction, respectively, hence we only need one boundary condition
which is (∂xφ) (X (t) , t) ≡ (∂xφ (x, t))x=X(t) = v (X (t) , t) = ∂tX (t) .

For ∂tX (t) << c we have the following approximate solution

φ (x, t) = −cX
(
t− x−X (t)

c

)
NOTE: This solution assumes implicitly that x is always to the right of the

wall, i.e,. x ≥ X (t) .
First show that this satisfies the wave equation up to terms of order ∂tX/c.

Let ξ (x, t) = t− (x−X (t)) /c, then(
∂x +

1

c
∂t

)
(−cX (ξ (x, t))) = −c (∂ξX) (∂xξ) +

1

c
(−c) (∂ξX) (∂tξ)

= −c (∂ξX)

(
−1

c

)
− (∂ξX)

(
1 +

∂tX (t)

c

)
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But given ∂tX (t) /c << 1 we have(
∂x +

1

c
∂t

)
(−cX (ξ (x, t))) =

(
∂x +

1

c
∂t

)(
−cX

(
t− x−X (t)

c

))
∼= 0

Show that it satsifies the boundary conditions.

∂xφ (x, t)|x=X(t) = ∂ξX (ξ (x, t))|x=X(t) = (∂ξX) (t) = ∂tX (t)

The density variation δρ (x, t) about a constant background density, ρ0, is
related to the speed of the molecules via

v (x, t)

c
=
δρ (x, t)

ρ0

and so
δρ (x, t)

ρ0

=
∂xφ (x, t)

c
= −∂xX

(
t− x−X (t)

c

)
Example 1: For the wall moving at a constant speed in steady state (all
transient effects have propagated away), X (t) = V t, we have

δρ (x, t)

ρ0

= −∂x
(
V ×

(
t− x− V t

c

))
=
V

c

and so all molecules everywhere are moving at the same speed V and so ∂xv (x, t) =
0.
In order to generate acoustic waves or pulses the wall must change speed,

i.e., it must accelerate.
Example 2: Consider the wall to have been oscillating forever with radian

frequency ω and amplitude X0 and to be at x = 0 at t = 0, then

X (t) = X0 sin [ωt]

The velocity and acceleration are given by

V (t) = ∂tX (t) = X0ω cos [ωt] ≡ V0 cos [ωt]

and

A (t) = ∂tV (t) = −X0ω
2 sin [ωt] ≡ A0 sin [ωt]

respectively. Using the above solution we have that, for V0 � c, as required by
the above solution, the relative density variation (effectively a pressure wave) is
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given by

δρ (x, t)

ρ0

= −∂x
(
X0 sin

[
ω

(
t− x−X0 sin [ωt]

c

)])
= −X0 cos

[
ω

(
t− x−X0 sin [ωt]

c

)]
×∂x

(
ω

(
t− x−X0 sin [ωt]

c

))
=

V0

c
cos

[
ω

(
t− x−X0 sin [ωt]

c

)]
'

{
V0
c cos [ωt] = V (t)

c for x = X (t)
V0
c cos

[
ω
c (x− ct)

]
for x� X0

Thus for x = X (t) , i.e., "at the wall", the relative density is proportional to
V (t) . For x � X0, i.e., "far away from the wall", we have a wave of relative
density with amplitude V0/c� 1 moving in the +x direction with speed c and
oscillating with radian frequency ω, exactly as expected.

Example 3: Suppose the wall is motionless up to time t = 0 and then starts
oscillating sinusoidally at t = 0, i.e.,

X (t) = X0 sin [ωt] θ (t)

Here θ (t) is the Heaviside step function: θ (t) = 0 for t < 0 and θ (t) = 1 for
t > 0.
Comment: In many problems specifying the value of θ (0) is not necessary.

In those problems where it is necessary to know θ (0), the value to choose is
usually dictated by the problem itself. Common choices are θ (0) = 0 or 1/2 or
1.
Substituting into the solution above we have

δρ (x, t)

ρ0

= −∂x
(
X0 sin

[
ω

(
t− x−X0 sin [ωt] θ (t)

c

)]
θ

(
t− x−X0 sin [ωt] θ (t)

c

))
=

V0

c
cos

[
ω

(
t− x−X0 sin [ωt]

c

)]
θ

(
t− x−X0 sin [ωt]

c

)
+
X0

c
sin

[
ω

(
t− x−X0 sin [ωt]

c

)]
δD

(
t− x−X0 sin [ωt]

c

)
At the end we have assumed t > 0 so that θ (t) = 1. Also we have used the
general relation ∂αθ (α) = δD (α) which holds for any variable α.

The Dirac delta function δD in the second term sets the sine factor multi-
plying it to zero and so finally we have

δρ (x, t)

ρ0

=
V0

c
cos

[
ω

(
t− x−X0 sin [ωt]

c

)]
θ

(
t− x−X0 sin [ωt]

c

)
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For t > 0 we have for x "at the wall", x = X (t) = X0 sin [ωt] and therefore
"at the wall" we have

δρ (x, t)

ρ0

=
V0

c
cos [ωt] θ (t) =

V0

c
cos [ωt]

just as in the previous example.
For x� X (t) = X0 sin [ωt] we have

δρ (x, t)

ρ0

' V0

c
cos
[
ω
(
t− x

c

)]
θ
(
t− x

c

)
'

{
V0
c cos

[
ω
(
t− x

c

)]
for x < ct

0 for x > ct

This again is exactly as expected. The wall started oscillating at t = 0 and
the density (or if you prefer, pressure) waves travel at speed c. For x > ct, the
waves haven’t arrived there yet and so δρ/ρ0 should be zero. To put this result
differently, the front end of the wave train is at x = ct.
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